These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 25605381)

  • 1. Integrating and amplifying signal from riboswitch biosensors.
    Goodson MS; Harbaugh SV; Chushak YG; Kelley-Loughnane N
    Methods Enzymol; 2015; 550():73-91. PubMed ID: 25605381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplifying Riboswitch Signal Output Using Cellular Wiring.
    Goodson MS; Bennett AC; Jennewine BR; Briskin E; Harbaugh SV; Kelley-Loughnane N
    ACS Synth Biol; 2017 Aug; 6(8):1440-1444. PubMed ID: 28430408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances.
    Kim J; Seo M; Lim Y; Kim J
    Adv Sci (Weinh); 2024 Sep; 11(36):e2402029. PubMed ID: 39075726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and application of riboswitch-based sensors that detect metabolites within bacterial cells.
    Fowler CC; Li Y
    Methods Mol Biol; 2014; 1103():177-97. PubMed ID: 24318895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboswitches: From living biosensors to novel targets of antibiotics.
    Mehdizadeh Aghdam E; Hejazi MS; Barzegar A
    Gene; 2016 Nov; 592(2):244-59. PubMed ID: 27432066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sense and sensitivity in bioprocessing-detecting cellular metabolites with biosensors.
    Dekker L; Polizzi KM
    Curr Opin Chem Biol; 2017 Oct; 40():31-36. PubMed ID: 28609710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors.
    Kellenberger CA; Hammond MC
    Methods Enzymol; 2015; 550():147-72. PubMed ID: 25605385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Riboswitch-Based Reversible Dual Color Sensor.
    Harbaugh SV; Goodson MS; Dillon K; Zabarnick S; Kelley-Loughnane N
    ACS Synth Biol; 2017 May; 6(5):766-781. PubMed ID: 28121427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Technologies of Synthetic Biosensors for Disease Detection: Design, Classification and Future Perspectives.
    Chen X; Lv Y; Wu RQ
    Chin Med Sci J; 2018 Dec; 33(4):240-251. PubMed ID: 30646988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Live Cell Imaging Using Riboswitch-Spinach tRNA Fusions as Metabolite-Sensing Fluorescent Biosensors.
    Kellenberger CA; Hallberg ZF; Hammond MC
    Methods Mol Biol; 2015; 1316():87-103. PubMed ID: 25967055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guanidine Biosensors Enable Comparison of Cellular Turn-on Kinetics of Riboswitch-Based Biosensor and Reporter.
    Manna S; Truong J; Hammond MC
    ACS Synth Biol; 2021 Mar; 10(3):566-578. PubMed ID: 33646758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Engineering of Microorganisms with Electroactive Genes for the Fabrication of Electrochemical Microbial Biosensors.
    Zhao J; Gao T
    Methods Mol Biol; 2024; 2844():247-260. PubMed ID: 39068345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures.
    Xiu Y; Jang S; Jones JA; Zill NA; Linhardt RJ; Yuan Q; Jung GY; Koffas MAG
    Biotechnol Bioeng; 2017 Oct; 114(10):2235-2244. PubMed ID: 28543037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of modular "plug-and-play" expression platforms derived from natural riboswitches for engineering novel genetically encodable RNA regulatory devices.
    Trausch JJ; Batey RT
    Methods Enzymol; 2015; 550():41-71. PubMed ID: 25605380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital biosensors with built-in logic for biomedical applications--biosensors based on a biocomputing concept.
    Wang J; Katz E
    Anal Bioanal Chem; 2010 Oct; 398(4):1591-603. PubMed ID: 20464382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Biology of Small RNAs and Riboswitches.
    Villa JK; Su Y; Contreras LM; Hammond MC
    Microbiol Spectr; 2018 May; 6(3):. PubMed ID: 29932045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Point-of-Use Detection of Environmental Fluoride
    Thavarajah W; Silverman AD; Verosloff MS; Kelley-Loughnane N; Jewett MC; Lucks JB
    ACS Synth Biol; 2020 Jan; 9(1):10-18. PubMed ID: 31829623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.
    Wittmann A; Suess B
    FEBS Lett; 2012 Jul; 586(15):2076-83. PubMed ID: 22710175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.