BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25605391)

  • 1. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Methods Enzymol; 2015; 550():283-99. PubMed ID: 25605391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor.
    Rudolph MM; Vockenhuber MP; Suess B
    Microbiology (Reading); 2013 Jul; 159(Pt 7):1416-1422. PubMed ID: 23676435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive characterization of a theophylline riboswitch reveals two pivotal features of Shine-Dalgarno influencing activated translation property.
    Cui W; Cheng J; Miao S; Zhou L; Liu Z; Guo J; Zhou Z
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):2107-2120. PubMed ID: 27986992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering an inducible gene expression system for Bacillus subtilis from a strong constitutive promoter and a theophylline-activated synthetic riboswitch.
    Cui W; Han L; Cheng J; Liu Z; Zhou L; Guo J; Zhou Z
    Microb Cell Fact; 2016 Nov; 15(1):199. PubMed ID: 27876054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Theophylline-Responsive Riboswitch Regulates Expression of Nuclear-Encoded Genes.
    Shanidze N; Lenkeit F; Hartig JS; Funck D
    Plant Physiol; 2020 Jan; 182(1):123-135. PubMed ID: 31704721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theophylline-dependent riboswitch as a novel genetic tool for strict regulation of protein expression in Cyanobacterium Synechococcus elongatus PCC 7942.
    Nakahira Y; Ogawa A; Asano H; Oyama T; Tozawa Y
    Plant Cell Physiol; 2013 Oct; 54(10):1724-35. PubMed ID: 23969558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic Evaluation of Genetic and Environmental Factors Affecting Performance of Translational Riboswitches.
    Kent R; Dixon N
    ACS Synth Biol; 2019 Apr; 8(4):884-901. PubMed ID: 30897329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3(2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose.
    Temuujin U; Chi WJ; Lee SY; Chang YK; Hong SK
    Appl Microbiol Biotechnol; 2011 Nov; 92(4):749-59. PubMed ID: 21655986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of the desferrioxamine gene cluster of Streptomyces coelicolor is mediated by binding of DmdR1 to an iron box in the promoter of the desA gene.
    Tunca S; Barreiro C; Sola-Landa A; Coque JJ; Martín JF
    FEBS J; 2007 Feb; 274(4):1110-22. PubMed ID: 17257267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered riboswitches: Expanding researchers' toolbox with synthetic RNA regulators.
    Wittmann A; Suess B
    FEBS Lett; 2012 Jul; 586(15):2076-83. PubMed ID: 22710175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboswitch-Based Reversible Dual Color Sensor.
    Harbaugh SV; Goodson MS; Dillon K; Zabarnick S; Kelley-Loughnane N
    ACS Synth Biol; 2017 May; 6(5):766-781. PubMed ID: 28121427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The agarase gene (dagA) of Streptomyces coelicolor A3(2): nucleotide sequence and transcriptional analysis.
    Buttner MJ; Fearnley IM; Bibb MJ
    Mol Gen Genet; 1987 Aug; 209(1):101-9. PubMed ID: 17165236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide second messenger-mediated regulation of a muralytic enzyme in Streptomyces.
    St-Onge RJ; Haiser HJ; Yousef MR; Sherwood E; Tschowri N; Al-Bassam M; Elliot MA
    Mol Microbiol; 2015 May; 96(4):779-95. PubMed ID: 25682701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA.
    Li W; Wu J; Tao W; Zhao C; Wang Y; He X; Chandra G; Zhou X; Deng Z; Chater KF; Tao M
    FEMS Microbiol Lett; 2007 Jan; 266(1):20-8. PubMed ID: 17100986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcription of the rpsO-pnp operon of Streptomyces coelicolor involves four temporally regulated, stress responsive promoters.
    Bralley P; Gatewood ML; Jones GH
    Gene; 2014 Feb; 536(1):177-85. PubMed ID: 24211388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Synthetic Riboswitch to Regulate Haloarchaeal Gene Expression.
    Born J; Weitzel K; Suess B; Pfeifer F
    Front Microbiol; 2021; 12():696181. PubMed ID: 34211452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis.
    Pedrolli DB; Matern A; Wang J; Ester M; Siedler K; Breaker R; Mack M
    Nucleic Acids Res; 2012 Sep; 40(17):8662-73. PubMed ID: 22740651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces.
    Rodríguez-García A; Combes P; Pérez-Redondo R; Smith MC; Smith MC
    Nucleic Acids Res; 2005 May; 33(9):e87. PubMed ID: 15917435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creation of Architecturally Minimal Transcriptionally Activating Riboswitches Responsive to Theophylline Reveals an Unconventional Design Strategy.
    Cui W; Lin Q; Wu Y; Wang X; Zhang Y; Lin X; Zhang L; Liu X; Han L; Zhou Z
    ACS Synth Biol; 2023 Dec; 12(12):3716-3729. PubMed ID: 38052004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.