These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25605391)

  • 61. Genome-wide identification and evaluation of constitutive promoters in streptomycetes.
    Li S; Wang J; Li X; Yin S; Wang W; Yang K
    Microb Cell Fact; 2015 Oct; 14():172. PubMed ID: 26515616
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Amplifying Riboswitch Signal Output Using Cellular Wiring.
    Goodson MS; Bennett AC; Jennewine BR; Briskin E; Harbaugh SV; Kelley-Loughnane N
    ACS Synth Biol; 2017 Aug; 6(8):1440-1444. PubMed ID: 28430408
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Developmental control of a parAB promoter leads to formation of sporulation-associated ParB complexes in Streptomyces coelicolor.
    Jakimowicz D; Mouz S; Zakrzewska-Czerwinska J; Chater KF
    J Bacteriol; 2006 Mar; 188(5):1710-20. PubMed ID: 16484182
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Deletion of the elongation factor 4 gene (lepA) in Streptomyces coelicolor enhances the production of the calcium-dependent antibiotic.
    Badu-Nkansah A; Sello JK
    FEMS Microbiol Lett; 2010 Oct; 311(2):147-51. PubMed ID: 20735483
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches.
    Ma AT; Schmidt CM; Golden JW
    Appl Environ Microbiol; 2014 Nov; 80(21):6704-13. PubMed ID: 25149516
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2).
    Rexer HU; Schäberle T; Wohlleben W; Engels A
    Arch Microbiol; 2006 Dec; 186(6):447-58. PubMed ID: 16932908
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The stress-response sigma factor sigma(H) controls the expression of ssgB, a homologue of the sporulation-specific cell division gene ssgA, in Streptomyces coelicolor A3(2).
    Kormanec J; Sevcikova B
    Mol Genet Genomics; 2002 Jun; 267(4):536-43. PubMed ID: 12111561
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rational design of artificial ON-riboswitches.
    Ogawa A
    Methods Mol Biol; 2014; 1111():165-81. PubMed ID: 24549619
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria.
    Mukherjee S; Barash D; Sengupta S
    PLoS One; 2017; 12(9):e0184314. PubMed ID: 28873470
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Translational gene expression control in Chlamydia trachomatis.
    Grieshaber NA; Chiarelli TJ; Appa CR; Neiswanger G; Peretti K; Grieshaber SS
    PLoS One; 2022; 17(1):e0257259. PubMed ID: 35085261
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A modular chromosomally integrated toolkit for ectopic gene expression in Vibrio cholerae.
    Dalia TN; Chlebek JL; Dalia AB
    Sci Rep; 2020 Sep; 10(1):15398. PubMed ID: 32958839
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Systematic optimization of L-tryptophan riboswitches for efficient monitoring of the metabolite in Escherichia coli.
    Jang S; Jung GY
    Biotechnol Bioeng; 2018 Jan; 115(1):266-271. PubMed ID: 28892124
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulatory systems for gene expression control in cyanobacteria.
    Till P; Toepel J; Bühler B; Mach RL; Mach-Aigner AR
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):1977-1991. PubMed ID: 31965222
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic
    Irla M; Hakvåg S; Brautaset T
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925231
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intracellular light-activation of riboswitch activity.
    Walsh S; Gardner L; Deiters A; Williams GJ
    Chembiochem; 2014 Jun; 15(9):1346-51. PubMed ID: 24861567
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Kinetic folding design of aptazyme-regulated expression devices as riboswitches for metabolic engineering.
    Sparkman-Yager D; Correa-Rojas RA; Carothers JM
    Methods Enzymol; 2015; 550():321-40. PubMed ID: 25605393
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Theophylline Aptamer: 25 Years as an Important Tool in Cellular Engineering Research.
    Wrist A; Sun W; Summers RM
    ACS Synth Biol; 2020 Apr; 9(4):682-697. PubMed ID: 32142605
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Integrating and amplifying signal from riboswitch biosensors.
    Goodson MS; Harbaugh SV; Chushak YG; Kelley-Loughnane N
    Methods Enzymol; 2015; 550():73-91. PubMed ID: 25605381
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Evaluation of inducible promoter-riboswitch constructs for heterologous protein expression in the cyanobacterial species Anabaena sp. PCC 7120.
    Svoboda J; Cisneros B; Philmus B
    Synth Biol (Oxf); 2021; 6(1):ysab019. PubMed ID: 34712843
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Safety evaluation of β-agarase preparations from Streptomyces coelicolor A3(2).
    Hong SJ; Lee JH; Kim EJ; Lee YH; Jung HM; Hong SK
    Regul Toxicol Pharmacol; 2019 Feb; 101():142-155. PubMed ID: 30453009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.