BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25605563)

  • 1. Subclass-specific labeling of protein-reactive natural products with customized nucleophilic probes.
    Rudolf GC; Koch MF; Mandl FA; Sieber SA
    Chemistry; 2015 Feb; 21(9):3701-7. PubMed ID: 25605563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of functional groups on the protein surface: development of epoxide probes for protein labeling.
    Chen G; Heim A; Riether D; Yee D; Milgrom Y; Gawinowicz MA; Sames D
    J Am Chem Soc; 2003 Jul; 125(27):8130-3. PubMed ID: 12837082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A workflow from untargeted LC-MS profiling to targeted natural product isolation.
    Callahan DL; Elliott CE
    Methods Mol Biol; 2013; 1055():57-70. PubMed ID: 23963903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Affinity-labeling-based introduction of a reactive handle for natural protein modification.
    Wakabayashi H; Miyagawa M; Koshi Y; Takaoka Y; Tsukiji S; Hamachi I
    Chem Asian J; 2008 Jul; 3(7):1134-9. PubMed ID: 18494012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleophilic ring-opening of epoxide and aziridine acetates for the stereodivergent synthesis of β-hydroxy and β-amino γ-lactams.
    Bisol TB; Bortoluzzi AJ; Sá MM
    J Org Chem; 2011 Feb; 76(3):948-62. PubMed ID: 21194209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action.
    Castro-Falcón G; Hahn D; Reimer D; Hughes CC
    ACS Chem Biol; 2016 Aug; 11(8):2328-36. PubMed ID: 27294329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural products and their biological targets: proteomic and metabolomic labeling strategies.
    Böttcher T; Pitscheider M; Sieber SA
    Angew Chem Int Ed Engl; 2010 Apr; 49(15):2680-98. PubMed ID: 20333627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically engineered extracts: source of bioactive compounds.
    Ramallo IA; Salazar MO; Mendez L; Furlan RL
    Acc Chem Res; 2011 Apr; 44(4):241-50. PubMed ID: 21355557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural products as chemical probes.
    Carlson EE
    ACS Chem Biol; 2010 Jul; 5(7):639-53. PubMed ID: 20509672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dichloromaleimide (diCMI): A Small and Fluorogenic Reactive Group for Use in Affinity Labeling.
    Chiba K; Hashimoto Y; Yamaguchi T
    Chem Pharm Bull (Tokyo); 2016; 64(11):1647-1653. PubMed ID: 27803475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target Identification of Bioactive Covalently Acting Natural Products.
    Nomura DK; Maimone TJ
    Curr Top Microbiol Immunol; 2019; 420():351-374. PubMed ID: 30105423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized magnetic beads-based multi-target affinity selection coupled with HPLC-MS for screening active compounds from traditional Chinese medicine and natural products.
    Chen Y; Chen Z; Wang Y
    Methods Mol Biol; 2015; 1286():121-9. PubMed ID: 25749951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Nucleophilic Chemical Probe Targeting Electrophilic Functional Groups in an Untargeted Way to Explore Cysteine Modulators in Natural Products.
    Gao Y; Li K; Zhang L; Chen C; Bai C
    ACS Chem Biol; 2022 Jul; 17(7):1685-1690. PubMed ID: 35766822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity-based protein profiling for natural product target discovery.
    Krysiak J; Breinbauer R
    Top Curr Chem; 2012; 324():43-84. PubMed ID: 22025071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-reactive natural products.
    Drahl C; Cravatt BF; Sorensen EJ
    Angew Chem Int Ed Engl; 2005 Sep; 44(36):5788-809. PubMed ID: 16149114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method to site-specifically identify and quantitate carbonyl end products of protein oxidation using oxidation-dependent element coded affinity tags (O-ECAT) and nanoliquid chromatography Fourier transform mass spectrometry.
    Lee S; Young NL; Whetstone PA; Cheal SM; Benner WH; Lebrilla CB; Meares CF
    J Proteome Res; 2006 Mar; 5(3):539-47. PubMed ID: 16512668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomics and dereplication strategies in natural products.
    Tawfike AF; Viegelmann C; Edrada-Ebel R
    Methods Mol Biol; 2013; 1055():227-44. PubMed ID: 23963915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An MS/MS library on an ion-trap instrument for efficient dereplication of natural products. Different fragmentation patterns for [M + H]+ and [M + Na]+ ions.
    Fredenhagen A; Derrien C; Gassmann E
    J Nat Prod; 2005 Mar; 68(3):385-91. PubMed ID: 15787441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Showdomycin as a versatile chemical tool for the detection of pathogenesis-associated enzymes in bacteria.
    Böttcher T; Sieber SA
    J Am Chem Soc; 2010 May; 132(20):6964-72. PubMed ID: 20433172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and biological evaluation of azido- and aziridino-hydroxyl-beta-lactams through stereo- and regioselective epoxide ring opening.
    Benfatti F; Cardillo G; Gentilucci L; Perciaccante R; Tolomelli A; Catapano A
    J Org Chem; 2006 Nov; 71(24):9229-32. PubMed ID: 17109554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.