These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25605900)

  • 1. Persistence of deeply sourced iron in the Pacific Ocean.
    Horner TJ; Williams HM; Hein JR; Saito MA; Burton KW; Halliday AN; Nielsen SG
    Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1292-7. PubMed ID: 25605900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constraints on the Cycling of Iron Isotopes From a Global Ocean Model.
    König D; Conway TM; Ellwood MJ; Homoky WB; Tagliabue A
    Global Biogeochem Cycles; 2021 Sep; 35(9):e2021GB006968. PubMed ID: 35860342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of hydrothermalism on the ocean iron cycle.
    Tagliabue A; Resing J
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2081):. PubMed ID: 29035256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron colloids dominate sedimentary supply to the ocean interior.
    Homoky WB; Conway TM; John SG; König D; Deng F; Tagliabue A; Mills RA
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33771922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.
    Resing JA; Sedwick PN; German CR; Jenkins WJ; Moffett JW; Sohst BM; Tagliabue A
    Nature; 2015 Jul; 523(7559):200-3. PubMed ID: 26156374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron isotopes reveal distinct dissolved iron sources and pathways in the intermediate versus deep Southern Ocean.
    Abadie C; Lacan F; Radic A; Pradoux C; Poitrasson F
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):858-863. PubMed ID: 28096366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cu isotopes in marine black shales record the Great Oxidation Event.
    Chi Fru E; Rodríguez NP; Partin CA; Lalonde SV; Andersson P; Weiss DJ; El Albani A; Rodushkin I; Konhauser KO
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4941-6. PubMed ID: 27091980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Ocean Biogeochemistry Regulates the Impact of Anthropogenic Aerosol Fe Deposition on the Cycling of Iron and Iron Isotopes in the North Pacific.
    König D; Conway TM; Hamilton DS; Tagliabue A
    Geophys Res Lett; 2022 Jul; 49(13):e2022GL098016. PubMed ID: 36245954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct iron isotopic signatures and supply from marine sediment dissolution.
    Homoky WB; John SG; Conway TM; Mills RA
    Nat Commun; 2013; 4():2143. PubMed ID: 23868399
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotopic constraints on biogeochemical cycling of copper in the ocean.
    Takano S; Tanimizu M; Hirata T; Sohrin Y
    Nat Commun; 2014 Dec; 5():5663. PubMed ID: 25476795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory study of iron isotope fractionation during dissolution of mineral dust and industrial ash in simulated cloud water.
    Maters EC; Mulholland DS; Flament P; de Jong J; Mattielli N; Deboudt K; Dhont G; Bychkov E
    Chemosphere; 2022 Jul; 299():134472. PubMed ID: 35367494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of dissolved iron sources to the North Atlantic Ocean.
    Conway TM; John SG
    Nature; 2014 Jul; 511(7508):212-5. PubMed ID: 25008528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic changes in circumpolar dust transport to the Subantarctic Pacific Ocean over the last two glacial cycles.
    Struve T; Longman J; Zander M; Lamy F; Winckler G; Pahnke K
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2206085119. PubMed ID: 36399546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment.
    Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K
    Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom.
    Shoenfelt EM; Sun J; Winckler G; Kaplan MR; Borunda AL; Farrell KR; Moreno PI; Gaiero DM; Recasens C; Sambrotto RN; Bostick BC
    Sci Adv; 2017 Jun; 3(6):e1700314. PubMed ID: 28691098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Major lithogenic contributions to the distribution and budget of iron in the North Pacific Ocean.
    Zheng L; Sohrin Y
    Sci Rep; 2019 Aug; 9(1):11652. PubMed ID: 31406147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH.
    Lemarchand D; Gaillardet J; Lewin E; Allègre CJ
    Nature; 2000 Dec 21-28; 408(6815):951-4. PubMed ID: 11140677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.
    Winckler G; Anderson RF; Jaccard SL; Marcantonio F
    Proc Natl Acad Sci U S A; 2016 May; 113(22):6119-24. PubMed ID: 27185933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No iron fertilization in the equatorial Pacific Ocean during the last ice age.
    Costa KM; McManus JF; Anderson RF; Ren H; Sigman DM; Winckler G; Fleisher MQ; Marcantonio F; Ravelo AC
    Nature; 2016 Jan; 529(7587):519-22. PubMed ID: 26819045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ocean acidification on iron availability to marine phytoplankton.
    Shi D; Xu Y; Hopkinson BM; Morel FM
    Science; 2010 Feb; 327(5966):676-9. PubMed ID: 20075213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.