These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25605942)
1. Short time interval for condensation of high-temperature silicates in the solar accretion disk. Luu TH; Young ED; Gounelle M; Chaussidon M Proc Natl Acad Sci U S A; 2015 Feb; 112(5):1298-303. PubMed ID: 25605942 [TBL] [Abstract][Full Text] [Related]
2. Magnesium and Olsen MB; Wielandt D; Schiller M; Van Kooten EM; Bizzarro M Geochim Cosmochim Acta; 2016 Oct; 191():118-138. PubMed ID: 27563152 [TBL] [Abstract][Full Text] [Related]
3. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions. Bizzarro M; Baker JA; Haack H Nature; 2004 Sep; 431(7006):275-8. PubMed ID: 15372023 [TBL] [Abstract][Full Text] [Related]
4. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules. Villeneuve J; Chaussidon M; Libourel G Science; 2009 Aug; 325(5943):985-8. PubMed ID: 19696348 [TBL] [Abstract][Full Text] [Related]
5. Extended chondrule formation intervals in distinct physicochemical environments: Evidence from Al-Mg isotope systematics of CR chondrite chondrules with unaltered plagioclase. Tenner TJ; Nakashima D; Ushikubo T; Tomioka N; Kimura M; Weisberg MK; Kita NT Geochim Cosmochim Acta; 2019 Sep; 260():133-160. PubMed ID: 32255837 [TBL] [Abstract][Full Text] [Related]
6. Oxygen isotope systematics of chondrules in the Murchison CM2 chondrite and implications for the CO-CM relationship. Chaumard N; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2018 May; 228():220-242. PubMed ID: 30713349 [TBL] [Abstract][Full Text] [Related]
7. Formation of chondrules in a moderately high dust enriched disk: evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite. Hertwig AT; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2018 Mar; 224():116-131. PubMed ID: 30713348 [TBL] [Abstract][Full Text] [Related]
8. Tungsten isotopic constraints on the age and origin of chondrules. Budde G; Kleine T; Kruijer TS; Burkhardt C; Metzler K Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2886-91. PubMed ID: 26929340 [TBL] [Abstract][Full Text] [Related]
9. New constraints from Siron G; Fukuda K; Kimura M; Kita NT Geochim Cosmochim Acta; 2021 Jan; 293():103-126. PubMed ID: 35001941 [No Abstract] [Full Text] [Related]
10. Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Bollard J; Connelly JN; Whitehouse MJ; Pringle EA; Bonal L; Jørgensen JK; Nordlund Å; Moynier F; Bizzarro M Sci Adv; 2017 Aug; 3(8):e1700407. PubMed ID: 28808680 [TBL] [Abstract][Full Text] [Related]
11. Chondrules reveal large-scale outward transport of inner Solar System materials in the protoplanetary disk. Williams CD; Sanborn ME; Defouilloy C; Yin QZ; Kita NT; Ebel DS; Yamakawa A; Yamashita K Proc Natl Acad Sci U S A; 2020 Sep; 117(38):23426-23435. PubMed ID: 32900966 [TBL] [Abstract][Full Text] [Related]
12. A unifying model for the accretion of chondrules and matrix. van Kooten EMME; Moynier F; Agranier A Proc Natl Acad Sci U S A; 2019 Sep; 116(38):18860-18866. PubMed ID: 31484773 [TBL] [Abstract][Full Text] [Related]
13. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions. Krot AN; Yurimoto H; Hutcheon ID; MacPherson GJ Nature; 2005 Apr; 434(7036):998-1001. PubMed ID: 15846340 [TBL] [Abstract][Full Text] [Related]
14. Chondrules as direct thermochemical sensors of solar protoplanetary disk gas. Libourel G; Portail M Sci Adv; 2018 Jul; 4(7):eaar3321. PubMed ID: 30009256 [TBL] [Abstract][Full Text] [Related]
15. Size-frequency distributions and physical properties of chondrules from x-ray computed microtomography and digital data extraction. Friedrich JM; Chen MM; Giordano SA; Matalka OK; Strasser JW; Tamucci KA; Rivers ML; Ebel DS Microsc Res Tech; 2022 May; 85(5):1814-1824. PubMed ID: 34962014 [TBL] [Abstract][Full Text] [Related]
16. Young chondrules in CB chondrites from a giant impact in the early Solar System. Krot AN; Amelin Y; Cassen P; Meibom A Nature; 2005 Aug; 436(7053):989-92. PubMed ID: 16107841 [TBL] [Abstract][Full Text] [Related]
17. The Hertwig AT; Makoto K; Ushikubo T; Defouilloy C; Kita NT Geochim Cosmochim Acta; 2019 May; 253():111-126. PubMed ID: 32214432 [TBL] [Abstract][Full Text] [Related]
18. Accretion of a large LL parent planetesimal from a recently formed chondrule population. Edwards GH; Blackburn T Sci Adv; 2020 Apr; 6(16):eaay8641. PubMed ID: 32494606 [TBL] [Abstract][Full Text] [Related]
19. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Connelly JN; Bizzarro M; Krot AN; Nordlund Å; Wielandt D; Ivanova MA Science; 2012 Nov; 338(6107):651-5. PubMed ID: 23118187 [TBL] [Abstract][Full Text] [Related]
20. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Amelin Y; Krot AN; Hutcheon ID; Ulyanov AA Science; 2002 Sep; 297(5587):1678-83. PubMed ID: 12215641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]