BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 25606679)

  • 1. Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle.
    Kampourakis T; Sun YB; Irving M
    Biophys J; 2015 Jan; 108(2):304-14. PubMed ID: 25606679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of myosin regulatory light chain controls myosin head conformation in cardiac muscle.
    Kampourakis T; Irving M
    J Mol Cell Cardiol; 2015 Aug; 85():199-206. PubMed ID: 26057075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orientation of the N-terminal lobe of the myosin regulatory light chain in skeletal muscle fibers.
    Romano D; Brandmeier BD; Sun YB; Trentham DR; Irving M
    Biophys J; 2012 Mar; 102(6):1418-26. PubMed ID: 22455925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Conformation of Myosin Heads in Relaxed Skeletal Muscle: Implications for Myosin-Based Regulation.
    Fusi L; Huang Z; Irving M
    Biophys J; 2015 Aug; 109(4):783-92. PubMed ID: 26287630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-dependent activation of myosin in the heart requires thin filament activation and thick filament mechanosensing.
    Park-Holohan SJ; Brunello E; Kampourakis T; Rees M; Irving M; Fusi L
    Proc Natl Acad Sci U S A; 2021 Apr; 118(16):. PubMed ID: 33850019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orientation changes of fluorescent probes at five sites on the myosin regulatory light chain during contraction of single skeletal muscle fibres.
    Sabido-David C; Hopkins SC; Saraswat LD; Lowey S; Goldman YE; Irving M
    J Mol Biol; 1998 Jun; 279(2):387-402. PubMed ID: 9642045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.
    Kampourakis T; Sun YB; Irving M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E3039-47. PubMed ID: 27162358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle.
    Ling N; Shrimpton C; Sleep J; Kendrick-Jones J; Irving M
    Biophys J; 1996 Apr; 70(4):1836-46. PubMed ID: 8785344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of the essential light chain region of myosin in relaxed, active, and rigor muscle.
    Knowles AC; Ferguson RE; Brandmeier BD; Sun YB; Trentham DR; Irving M
    Biophys J; 2008 Oct; 95(8):3882-91. PubMed ID: 18621839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GFP-tagged regulatory light chain monitors single myosin lever-arm orientation in a muscle fiber.
    Burghardt TP; Ajtai K; Chan DK; Halstead MF; Li J; Zheng Y
    Biophys J; 2007 Sep; 93(6):2226-39. PubMed ID: 17513376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of the myosin light chain region by single molecule total internal reflection fluorescence polarization microscopy.
    Quinlan ME; Forkey JN; Goldman YE
    Biophys J; 2005 Aug; 89(2):1132-42. PubMed ID: 15894631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional rhodamine probes of Myosin regulatory light chain orientation in relaxed skeletal muscle fibers.
    Brack AS; Brandmeier BD; Ferguson RE; Criddle S; Dale RE; Irving M
    Biophys J; 2004 Apr; 86(4):2329-41. PubMed ID: 15041671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation changes of the myosin light chain domain during filament sliding in active and rigor muscle.
    Hopkins SC; Sabido-David C; van der Heide UA; Ferguson RE; Brandmeier BD; Dale RE; Kendrick-Jones J; Corrie JE; Trentham DR; Irving M; Goldman YE
    J Mol Biol; 2002 May; 318(5):1275-91. PubMed ID: 12083517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction between the regulatory light chain domains on two heads is critical for regulation of smooth muscle myosin.
    Li XD; Saito J; Ikebe R; Mabuchi K; Ikebe M
    Biochemistry; 2000 Mar; 39(9):2254-60. PubMed ID: 10694391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation and motion of myosin light chain and troponin in reconstituted muscle fibers as detected by ESR with a new bifunctional spin label.
    Arata T; Nakamura M; Akahane H; Aihara T; Ueki S; Sugata K; Kusuhara H; Morimoto M; Yamamoto Y
    Adv Exp Med Biol; 2003; 538():279-83; discussion 284. PubMed ID: 15098675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers.
    Hopkins SC; Sabido-David C; Corrie JE; Irving M; Goldman YE
    Biophys J; 1998 Jun; 74(6):3093-110. PubMed ID: 9635763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of cardiac thick filament dynamics in ex vivo heart preparations.
    Kelly CM; Martin JL; Coseno M; Previs MJ
    J Mol Cell Cardiol; 2023 Dec; 185():88-98. PubMed ID: 37923195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophic cardiomyopathy mutation R58Q in the myosin regulatory light chain perturbs thick filament-based regulation in cardiac muscle.
    Kampourakis T; Ponnam S; Irving M
    J Mol Cell Cardiol; 2018 Apr; 117():72-81. PubMed ID: 29452157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation and the N-terminal extension of the regulatory light chain help orient and align the myosin heads in Drosophila flight muscle.
    Farman GP; Miller MS; Reedy MC; Soto-Adames FN; Vigoreaux JO; Maughan DW; Irving TC
    J Struct Biol; 2009 Nov; 168(2):240-9. PubMed ID: 19635572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotational dynamics of the regulatory light chain in scallop muscle detected by time-resolved phosphorescence anisotropy.
    Ramachandran S; Thomas DD
    Biochemistry; 1999 Jul; 38(28):9097-104. PubMed ID: 10413484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.