BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25606681)

  • 1. Phosphorylation in the catalytic cleft stabilizes and attracts domains of a phosphohexomutase.
    Xu J; Lee Y; Beamer LJ; Van Doren SR
    Biophys J; 2015 Jan; 108(2):325-37. PubMed ID: 25606681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion of enzyme flexibility by dephosphorylation and coupling to the catalytic mechanism of a phosphohexomutase.
    Lee Y; Villar MT; Artigues A; Beamer LJ
    J Biol Chem; 2014 Feb; 289(8):4674-82. PubMed ID: 24403075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an essential active-site residue in the α-D-phosphohexomutase enzyme superfamily.
    Lee Y; Mehra-Chaudhary R; Furdui C; Beamer LJ
    FEBS J; 2013 Jun; 280(11):2622-32. PubMed ID: 23517223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction of phosphohexomutase from Pseudomonas aeruginosa: structural insights into a simple processive enzyme.
    Regni C; Schramm AM; Beamer LJ
    J Biol Chem; 2006 Jun; 281(22):15564-71. PubMed ID: 16595672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution NMR of a 463-residue phosphohexomutase: domain 4 mobility, substates, and phosphoryl transfer defect.
    Sarma AV; Anbanandam A; Kelm A; Mehra-Chaudhary R; Wei Y; Qin P; Lee Y; Berjanskii MV; Mick JA; Beamer LJ; Van Doren SR
    Biochemistry; 2012 Jan; 51(3):807-19. PubMed ID: 22242625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backbone flexibility, conformational change, and catalysis in a phosphohexomutase from Pseudomonas aeruginosa.
    Schramm AM; Mehra-Chaudhary R; Furdui CM; Beamer LJ
    Biochemistry; 2008 Sep; 47(35):9154-62. PubMed ID: 18690721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical shift assignments of domain 4 from the phosphohexomutase from Pseudomonas aeruginosa suggest that freeing perturbs its coevolved domain interface.
    Wei Y; Marcink TC; Xu J; Sirianni AG; Sarma AV; Prior SH; Beamer LJ; Van Doren SR
    Biomol NMR Assign; 2014 Oct; 8(2):329-33. PubMed ID: 23893395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of active site residues in Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase.
    Naught LE; Regni C; Beamer LJ; Tipton PA
    Biochemistry; 2003 Aug; 42(33):9946-51. PubMed ID: 12924943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family.
    Lee Y; Mick J; Furdui C; Beamer LJ
    PLoS One; 2012; 7(6):e38114. PubMed ID: 22685552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexes of the enzyme phosphomannomutase/phosphoglucomutase with a slow substrate and an inhibitor.
    Regni C; Shackelford GS; Beamer LJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Aug; 62(Pt 8):722-6. PubMed ID: 16880541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment and Impacts of Phosphorylation on Protein Flexibility of the α-d-Phosphohexomutases.
    Stiers KM; Beamer LJ
    Methods Enzymol; 2018; 607():241-267. PubMed ID: 30149860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the covalent connection: Chain connectivity and the catalytic reaction of PMM/PGM.
    Schramm AM; Karr D; Mehra-Chaudhary R; Van Doren SR; Furdui CM; Beamer LJ
    Protein Sci; 2010 Jun; 19(6):1235-42. PubMed ID: 20512975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa.
    Regni C; Naught L; Tipton PA; Beamer LJ
    Structure; 2004 Jan; 12(1):55-63. PubMed ID: 14725765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and reorientation of glucose 1,6-bisphosphate in the PMM/PGM reaction: transient-state kinetic studies.
    Naught LE; Tipton PA
    Biochemistry; 2005 May; 44(18):6831-6. PubMed ID: 15865428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain motion and interdomain hot spots in a multidomain enzyme.
    Chuang GY; Mehra-Chaudhary R; Ngan CH; Zerbe BS; Kozakov D; Vajda S; Beamer LJ
    Protein Sci; 2010 Sep; 19(9):1662-72. PubMed ID: 20589904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of P. aeruginosa virulence factors.
    Regni C; Tipton PA; Beamer LJ
    Structure; 2002 Feb; 10(2):269-79. PubMed ID: 11839312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational cycling in beta-phosphoglucomutase catalysis: reorientation of the beta-D-glucose 1,6-(Bis)phosphate intermediate.
    Dai J; Wang L; Allen KN; Radstrom P; Dunaway-Mariano D
    Biochemistry; 2006 Jun; 45(25):7818-24. PubMed ID: 16784233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanism and pH dependence of the kinetic parameters of Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase.
    Naught LE; Tipton PA
    Arch Biochem Biophys; 2001 Dec; 396(1):111-8. PubMed ID: 11716469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a thermostable enzyme with phosphomannomutase/phosphoglucomutase activities from the hyperthermophilic archaeon Pyrococcus horikoshii OT3.
    Akutsu J; Zhang Z; Tsujimura M; Sasaki M; Yohda M; Kawarabayasi Y
    J Biochem; 2005 Aug; 138(2):159-66. PubMed ID: 16091590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.