These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 25606810)

  • 1. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design.
    Newsham EI; Phillips EA; Ma H; Chang MM; Wereley ST; Linnes JC
    Lab Chip; 2022 Jul; 22(14):2741-2752. PubMed ID: 35762978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sliding walls: a new paradigm for fluidic actuation and protocol implementation in microfluidics.
    Venzac B; Liu Y; Ferrante I; Vargas P; Yamada A; Courson R; Verhulsel M; Malaquin L; Viovy JL; Descroix S
    Microsyst Nanoeng; 2020; 6():18. PubMed ID: 34567633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally actuated wax valves for paper-fluidic diagnostics.
    Phillips EA; Shen R; Zhao S; Linnes JC
    Lab Chip; 2016 Oct; 16(21):4230-4236. PubMed ID: 27722697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic timing valves for fluid control in paper-based microfluidics.
    Li X; Zwanenburg P; Liu X
    Lab Chip; 2013 Jul; 13(13):2609-14. PubMed ID: 23584207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Capillary-Driven Fluid Transport in Paper-Based Microfluidic Devices Using a Movable Valve.
    Li B; Yu L; Qi J; Fu L; Zhang P; Chen L
    Anal Chem; 2017 Jun; 89(11):5707-5712. PubMed ID: 28474516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically-controlled closable microvalves for polymeric centrifugal microfluidic devices.
    Woolf MS; Dignan LM; Lewis HM; Tomley CJ; Nauman AQ; Landers JP
    Lab Chip; 2020 Apr; 20(8):1426-1440. PubMed ID: 32201873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A paper-based microfluidic platform with shape-memory-polymer-actuated fluid valves for automated multi-step immunoassays.
    Fu H; Song P; Wu Q; Zhao C; Pan P; Li X; Li-Jessen NYK; Liu X
    Microsyst Nanoeng; 2019; 5():50. PubMed ID: 31636936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacturable plastic microfluidic valves using thermal actuation.
    Pitchaimani K; Sapp BC; Winter A; Gispanski A; Nishida T; Hugh Fan Z
    Lab Chip; 2009 Nov; 9(21):3082-7. PubMed ID: 19823723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular design of paper based switches for autonomous lab-on paper micro devices.
    Patil Y; Dotseth K; Shapiro T; Pushparajan D; Binderup S; Horn JR; Korampally V
    Biomed Microdevices; 2020 Nov; 23(1):1. PubMed ID: 33247780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-printed microfluidic automation.
    Au AK; Bhattacharjee N; Horowitz LF; Chang TC; Folch A
    Lab Chip; 2015 Apr; 15(8):1934-41. PubMed ID: 25738695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-triggered logical flow control for comprehensive process integration of multi-step assays on centrifugal microfluidic platforms.
    Kinahan DJ; Kearney SM; Dimov N; Glynn MT; Ducrée J
    Lab Chip; 2014 Jul; 14(13):2249-58. PubMed ID: 24811251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.
    Kim TH; Hahn YK; Lee J; van Noort D; Kim MS
    Anal Chem; 2018 Feb; 90(4):2534-2541. PubMed ID: 29365265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-High-Low Rotationally Pulse-Actuated Serial Dissolvable Film Valves Applied to Solid Phase Extraction and LAMP Isothermal Amplification for Plant Pathogen Detection on a Lab-on-a-Disc.
    Julius LA; Saeed MM; Kuijpers T; Sandu S; Henihan G; Dreo T; Schoen CD; Mishra R; Dunne NJ; Carthy E; Ducrée J; Kinahan DJ
    ACS Omega; 2024 Jan; 9(3):3262-3275. PubMed ID: 38284094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lab-on-a-disc with reversible and thermally stable diaphragm valves.
    Kim TH; Sunkara V; Park J; Kim CJ; Woo HK; Cho YK
    Lab Chip; 2016 Oct; 16(19):3741-9. PubMed ID: 27534824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction.
    Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips.
    Zhang Q; Zhang M; Djeghlaf L; Bataille J; Gamby J; Haghiri-Gosnet AM; Pallandre A
    Electrophoresis; 2017 Apr; 38(7):953-976. PubMed ID: 28059451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.
    Sahore V; Kumar S; Rogers CI; Jensen JK; Sonker M; Woolley AT
    Anal Bioanal Chem; 2016 Jan; 408(2):599-607. PubMed ID: 26537925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.