BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 25606815)

  • 1. Dietary Antioxidants as Modifiers of Physiologic Adaptations to Exercise.
    Mankowski RT; Anton SD; Buford TW; Leeuwenburgh C
    Med Sci Sports Exerc; 2015 Sep; 47(9):1857-68. PubMed ID: 25606815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Oxidative Stress by Antioxidant Supplementation Does Not Limit Muscle Mitochondrial Biogenesis or Endurance Capacity in Rats.
    Kim JC; Park GD; Kim SH
    J Nutr Sci Vitaminol (Tokyo); 2017; 63(5):277-283. PubMed ID: 29225311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.
    Shill DD; Southern WM; Willingham TB; Lansford KA; McCully KK; Jenkins NT
    J Physiol; 2016 Dec; 594(23):7005-7014. PubMed ID: 27501153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vitamin E supplementation modifies adaptive responses to training in rat skeletal muscle.
    Venditti P; Napolitano G; Barone D; Di Meo S
    Free Radic Res; 2014 Oct; 48(10):1179-89. PubMed ID: 24957207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of vitamin C or protandim on skeletal muscle adaptation to exercise.
    Bruns DR; Ehrlicher SE; Khademi S; Biela LM; Peelor FF; Miller BF; Hamilton KL
    J Appl Physiol (1985); 2018 Aug; 125(2):661-671. PubMed ID: 29856263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox modulation of mitochondriogenesis in exercise. Does antioxidant supplementation blunt the benefits of exercise training?
    Gomez-Cabrera MC; Salvador-Pascual A; Cabo H; Ferrando B; Viña J
    Free Radic Biol Med; 2015 Sep; 86():37-46. PubMed ID: 25889822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Communication: Dietary selenium improves skeletal muscle mitochondrial biogenesis in young equine athletes.
    White SH; Wohlgemuth S; Li C; Warren LK
    J Anim Sci; 2017 Sep; 95(9):4078-4084. PubMed ID: 28992020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?
    Merry TL; Ristow M
    J Physiol; 2016 Sep; 594(18):5135-47. PubMed ID: 26638792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle redox signalling pathways in exercise. Role of antioxidants.
    Mason SA; Morrison D; McConell GK; Wadley GD
    Free Radic Biol Med; 2016 Sep; 98():29-45. PubMed ID: 26912034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptations of skeletal muscle mitochondria to exercise training.
    Lundby C; Jacobs RA
    Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis.
    Strobel NA; Peake JM; Matsumoto A; Marsh SA; Coombes JS; Wadley GD
    Med Sci Sports Exerc; 2011 Jun; 43(6):1017-24. PubMed ID: 21085043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mitochondria in redox signaling of muscle homeostasis.
    Ji LL; Yeo D; Kang C; Zhang T
    J Sport Health Sci; 2020 Sep; 9(5):386-393. PubMed ID: 32780692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise training combined with antioxidant supplementation prevents the antiproliferative activity of their single treatment in prostate cancer through inhibition of redox adaptation.
    Gueritat J; Lefeuvre-Orfila L; Vincent S; Cretual A; Ravanat JL; Gratas-Delamarche A; Rannou-Bekono F; Rebillard A
    Free Radic Biol Med; 2014 Dec; 77():95-105. PubMed ID: 25236740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant Supplementation and Adaptive Response to Training: A Systematic Review.
    Pastor R; Tur JA
    Curr Pharm Des; 2019; 25(16):1889-1912. PubMed ID: 31267859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of antioxidant supplementation on insulin sensitivity in response to endurance exercise training.
    Yfanti C; Nielsen AR; Akerström T; Nielsen S; Rose AJ; Richter EA; Lykkesfeldt J; Fischer CP; Pedersen BK
    Am J Physiol Endocrinol Metab; 2011 May; 300(5):E761-70. PubMed ID: 21325105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and aging. Role of exercise and its influences on antioxidant systems.
    Ji LL; Leeuwenburgh C; Leichtweis S; Gore M; Fiebig R; Hollander J; Bejma J
    Ann N Y Acad Sci; 1998 Nov; 854():102-17. PubMed ID: 9928424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.
    Slattery K; Bentley D; Coutts AJ
    Sports Med; 2015 Apr; 45(4):453-71. PubMed ID: 25398224
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 30.