These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 25606876)

  • 1. Simultaneous multichannel wavelength multicasting and XOR logic gate multicasting for three DPSK signals based on four-wave mixing in quantum-dot semiconductor optical amplifier.
    Qin J; Lu GW; Sakamoto T; Akahane K; Yamamoto N; Wang D; Wang C; Wang H; Zhang M; Kawanishi T; Ji Y
    Opt Express; 2014 Dec; 22(24):29413-23. PubMed ID: 25606876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing.
    Wang J; Sun Q; Sun J
    Opt Express; 2009 Jul; 17(15):12555-63. PubMed ID: 19654658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA.
    Contestabile G; Yoshida Y; Maruta A; Kitayama K
    Opt Express; 2012 Dec; 20(25):27902-7. PubMed ID: 23262735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical multiple-channel logic XOR gate for NRZ-DPSK signals based on nondegenerate four-wave mixing in a silicon waveguide.
    Xie Y; Gao Y; Gao S; Mou X; He S
    Opt Lett; 2011 Nov; 36(21):4260-2. PubMed ID: 22048384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated nonlinear interferometer with wavelength multicasting functionality.
    Yang W; Yu Y; Zhang X
    Opt Express; 2016 Aug; 24(16):18217-28. PubMed ID: 27505786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA.
    Yu Y; Zou B; Wu W; Zhang X
    Opt Express; 2011 Jul; 19(15):14720-5. PubMed ID: 21934834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical XOR logic gate for 40Gb/s DPSK signals via FWM in a silicon nanowire.
    Li F; Vo TD; Husko C; Pelusi M; Xu DX; Densmore A; Ma R; Janz S; Eggleton BJ; Moss DJ
    Opt Express; 2011 Oct; 19(21):20364-71. PubMed ID: 21997046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide.
    Husko C; Vo TD; Corcoran B; Li J; Krauss TF; Eggleton BJ
    Opt Express; 2011 Oct; 19(21):20681-90. PubMed ID: 21997079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible and re-configurable optical three-input XOR logic gate of phase-modulated signals with multicast functionality for potential application in optical physical-layer network coding.
    Lu GW; Qin J; Wang H; Ji X; Sharif GM; Yamaguchi S
    Opt Express; 2016 Feb; 24(3):2299-306. PubMed ID: 26906806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.
    Kim HJ; Song JI
    Opt Express; 2012 Mar; 20(7):8047-54. PubMed ID: 22453476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-optical modulation-transparent wavelength multicasting in a highly nonlinear fiber Sagnac loop mirror.
    Wang D; Cheng TH; Yeo YK; Liu J; Xu Z; Wang Y; Xiao G
    Opt Express; 2010 May; 18(10):10343-53. PubMed ID: 20588889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals.
    Wang J; Bakhtiari Z; Nuccio SR; Yilmaz OF; Wu X; Willner AE
    Opt Lett; 2010 Sep; 35(17):2979-81. PubMed ID: 20808389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seven-channel all-optical reconfigurable canonical logic units multicasting at 40 Gb/s based on a nonlinearity-enhanced silicon waveguide.
    Gao X; Gu W; Dong W; Zhou H; Lei L; Chen L; Yu Y; Dong J; Zhang X
    Opt Express; 2022 Aug; 30(18):32650-32659. PubMed ID: 36242321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems.
    Hamié A; Hamze M; Wei JL; Sharaiha A; Tang JM
    Opt Express; 2011 Dec; 19(25):25696-711. PubMed ID: 22273962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration and devices optimization of NRZ-DPSK amplitude regeneration scheme based on SOAs.
    Cao T; Chen L; Yu Y; Zhang X
    Opt Express; 2014 Dec; 22(26):32138-49. PubMed ID: 25607178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide.
    Pu M; Hu H; Ji H; Galili M; Oxenløwe LK; Jeppesen P; Hvam JM; Yvind K
    Opt Express; 2011 Nov; 19(24):24448-53. PubMed ID: 22109471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-domain model of quantum-dot semiconductor optical amplifiers for wideband optical signals.
    Puris D; Schmidt-Langhorst C; Lüdge K; Majer N; Schöll E; Petermann K
    Opt Express; 2012 Nov; 20(24):27265-82. PubMed ID: 23187582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier.
    Matsuura M; Calabretta N; Raz O; Dorren HJ
    Opt Express; 2011 Dec; 19(26):B560-6. PubMed ID: 22274071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single SOA based simultaneous amplitude regeneration for WDM-PDM RZ-PSK signals.
    Wu W; Yu Y; Zou B; Yang W; Zhang X
    Opt Express; 2013 Mar; 21(6):6718-23. PubMed ID: 23546053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration.
    Nguyen Tan H; Matsuura M; Katafuchi T; Kishi N
    Opt Express; 2009 Dec; 17(25):22960-73. PubMed ID: 20052222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.