These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25606906)

  • 1. Size dependence of band structures in a two-dimensional plasmonic crystal with a square lattice.
    Yamamoto N; Saito H
    Opt Express; 2014 Dec; 22(24):29761-77. PubMed ID: 25606906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size dependence of bandgaps in a two-dimensional plasmonic crystal with a hexagonal lattice.
    Saito H; Yamamoto N
    Opt Express; 2015 Feb; 23(3):2524-40. PubMed ID: 25836118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.
    Takeuchi K; Yamamoto N
    Opt Express; 2011 Jun; 19(13):12365-74. PubMed ID: 21716474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confinement of Surface Plasmon Polaritons by Heterostructures of Plasmonic Crystals.
    Saito H; Mizuma S; Yamamoto N
    Nano Lett; 2015 Oct; 15(10):6789-93. PubMed ID: 26414000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size dependence of band-gaps in a one-dimensional plasmonic crystal.
    Watanabe H; Honda M; Yamamoto N
    Opt Express; 2014 Mar; 22(5):5155-65. PubMed ID: 24663855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size dependence of surface plasmon modes in one-dimensional plasmonic crystal cavities.
    Honda M; Yamamoto N
    Opt Express; 2013 May; 21(10):11973-83. PubMed ID: 23736419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic band structures of colloidal crystals measured with angle-resolved reflection spectroscopy.
    Ishii M; Harada M; Tsukigase A; Nakamura H
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):224-30. PubMed ID: 17258899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathodoluminescent spectroscopic imaging of surface plasmon polaritons in a 1-dimensional plasmonic crystal.
    Suzuki T; Yamamoto N
    Opt Express; 2009 Dec; 17(26):23664-71. PubMed ID: 20052076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion relation and radiation properties of plasmonic crystals with triangular lattices.
    Okamoto T; Kawata S
    Opt Express; 2012 Feb; 20(5):5168-77. PubMed ID: 22418322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals.
    Burr GW; Diziain S; Bernal MP
    Opt Express; 2008 Apr; 16(9):6302-16. PubMed ID: 18545333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping optical Bloch modes of a plasmonic square lattice in real and reciprocal spaces using cathodoluminescence spectroscopy.
    Bittorf PH; Davoodi F; Taleb M; Talebi N
    Opt Express; 2021 Oct; 29(21):34328-34340. PubMed ID: 34809226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiperiodic moiré plasmonic crystals.
    Lubin SM; Hryn AJ; Huntington MD; Engel CJ; Odom TW
    ACS Nano; 2013 Dec; 7(12):11035-42. PubMed ID: 24228849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valley-Polarized Plasmonic Edge Mode Visualized in the Near-Infrared Spectral Range.
    Saito H; Yoshimoto D; Moritake Y; Matsukata T; Yamamoto N; Sannomiya T
    Nano Lett; 2021 Aug; 21(15):6556-6562. PubMed ID: 34314178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous two-dimensional phononic and photonic band gaps in opto-mechanical crystal slabs.
    Mohammadi S; Eftekhar AA; Khelif A; Adibi A
    Opt Express; 2010 Apr; 18(9):9164-72. PubMed ID: 20588763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.
    Yamamoto N
    Microscopy (Oxf); 2016 Aug; 65(4):282-95. PubMed ID: 27473259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic crystal digital alloys and their band structure properties.
    Lee J; Kim DU; Jeon H
    Opt Express; 2011 Sep; 19(20):19255-64. PubMed ID: 21996867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-insulator-metal plasmonic absorbers: influence of lattice.
    Chen Y; Dai J; Yan M; Qiu M
    Opt Express; 2014 Dec; 22(25):30807-14. PubMed ID: 25607029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise fabrication of point defects in self-assembled three-dimensional macroporous photonic crystals.
    Xie R; Sekiguchi T; Li D; Yang D; Jiang M
    J Phys Chem B; 2006 Jan; 110(3):1107-10. PubMed ID: 16471650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Milliwatt-level fiber-coupled laser power from photonic crystal band-edge laser.
    Kim S; Ahn S; Lee J; Jeon H; Regreny P; Seassal C; Augendre E; Di Cioccio L
    Opt Express; 2011 Jan; 19(3):2105-10. PubMed ID: 21369027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.