These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25606946)

  • 1. Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths.
    Park MS; Bhattarai K; Kim DK; Kang SW; Kim JO; Zhou J; Jang WY; Noyola M; Urbas A; Ku Z; Lee SJ
    Opt Express; 2014 Dec; 22(24):30161-9. PubMed ID: 25606946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Low-loss Metasurface Antireflection Coating on Dispersive Surface Plasmon Structure.
    Jeon J; Bhattarai K; Kim DK; Kim JO; Urbas A; Lee SJ; Ku Z; Zhou J
    Sci Rep; 2016 Nov; 6():36190. PubMed ID: 27805052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-plasmon mediated total absorption of light into silicon.
    Yoon JW; Park WJ; Lee KJ; Song SH; Magnusson R
    Opt Express; 2011 Oct; 19(21):20673-80. PubMed ID: 21997078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance.
    Mahmood R; Johnson MB; Hillier AC
    Anal Chem; 2019 Jul; 91(13):8350-8357. PubMed ID: 31140785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffraction-based tracking of surface plasmon resonance enhanced transmission through a gold-coated grating.
    Yeh WH; Petefish JW; Hillier AC
    Anal Chem; 2011 Aug; 83(15):6047-53. PubMed ID: 21688830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range.
    DiPippo W; Lee BJ; Park K
    Opt Express; 2010 Aug; 18(18):19396-406. PubMed ID: 20940835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity Enhancement of Transition Metal Dichalcogenides/Silicon Nanostructure-based Surface Plasmon Resonance Biosensor.
    Ouyang Q; Zeng S; Jiang L; Hong L; Xu G; Dinh XQ; Qian J; He S; Qu J; Coquet P; Yong KT
    Sci Rep; 2016 Jun; 6():28190. PubMed ID: 27305974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of subwavelength grating structure for enhanced surface plasmon resonance detection.
    Tahmasebpour M; Bahrami M; Asgari A
    Appl Opt; 2014 Sep; 53(27):6307-16. PubMed ID: 25322112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure.
    Park CH; Yoon YT; Lee SS
    Opt Express; 2012 Oct; 20(21):23769-77. PubMed ID: 23188342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon drag effect in a dielectrically modulated metallic thin film.
    Kurosawa H; Ishihara T
    Opt Express; 2012 Jan; 20(2):1561-74. PubMed ID: 22274499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Second-order nonlinearity in triangular lattice perforated gold film due to surface plasmas resonance.
    Zhou R; Chen X; Xiao Y; Zhou B; Wu L; Liu X; Gao Y; Zhan J
    ScientificWorldJournal; 2014; 2014():284929. PubMed ID: 24693233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to avoid a negative shift in reflection-type surface plasmon resonance biosensors with metallic nanostructures.
    Kim NH; Kim TW; Byun KM; Leem JW; Yu JS
    Opt Express; 2014 Feb; 22(4):4723-30. PubMed ID: 24663791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side-coupled cavity model for surface plasmon-polariton transmission across a groove.
    Liu JS; White JS; Fan S; Brongersma ML
    Opt Express; 2009 Sep; 17(20):17837-48. PubMed ID: 19907571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase shifts and interference in surface plasmon polariton waves.
    Weiner J
    Opt Express; 2008 Jan; 16(2):950-6. PubMed ID: 18542169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buried nanoantenna arrays: versatile antireflection coating.
    Kabiri A; Girgis E; Capasso F
    Nano Lett; 2013; 13(12):6040-7. PubMed ID: 24266700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-plasmon-polariton assisted diffraction in periodic subwavelength holes of metal films with reduced interplane coupling.
    Fang X; Li Z; Long Y; Wei H; Liu R; Ma J; Kamran M; Zhao H; Han X; Zhao B; Qiu X
    Phys Rev Lett; 2007 Aug; 99(6):066805. PubMed ID: 17930854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a variable angle reflection Fourier transform infrared accessory modified for surface plasmon resonance spectroscopy.
    Menegazzo N; Kegel LL; Kim YC; Booksh KS
    Appl Spectrosc; 2010 Oct; 64(10):1181-6. PubMed ID: 20925990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attomolar protein detection using in-hole surface plasmon resonance.
    Ferreira J; Santos MJ; Rahman MM; Brolo AG; Gordon R; Sinton D; Girotto EM
    J Am Chem Soc; 2009 Jan; 131(2):436-7. PubMed ID: 19140784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators.
    Spinelli P; Verschuuren MA; Polman A
    Nat Commun; 2012 Feb; 3():692. PubMed ID: 22353722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.