BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 25606976)

  • 1. Revealing gene clusters associated with the development of cholangiocarcinoma, based on a time series analysis.
    Wu J; Xiao Z; Zhao X; Wu X
    Mol Med Rep; 2015 May; 11(5):3481-6. PubMed ID: 25606976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of biomarkers of intrahepatic cholangiocarcinoma via integrated analysis of mRNA and miRNA microarray data.
    Chen Y; Liu D; Liu P; Chen Y; Yu H; Zhang Q
    Mol Med Rep; 2017 Mar; 15(3):1051-1056. PubMed ID: 28098904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of hepatocellular carcinoma (HCC), cholangiocarcinoma (CC), and combined HCC-CC (CHC) with each other based on microarray dataset.
    Wang L
    Tumour Biol; 2013 Jun; 34(3):1679-84. PubMed ID: 23532688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of transcription factors (TFs) and targets involved in the cholangiocarcinoma (CCA) by integrated analysis.
    Yang L; Feng S; Yang Y
    Cancer Gene Ther; 2016 Dec; 23(12):439-445. PubMed ID: 27857060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular profiling of intrahepatic cholangiocarcinoma: the search for new therapeutic targets.
    Oliveira DV; Zhang S; Chen X; Calvisi DF; Andersen JB
    Expert Rev Gastroenterol Hepatol; 2017 Apr; 11(4):349-356. PubMed ID: 28162004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of gene expression in human intrahepatic cholangiocarcinoma.
    Obama K; Ura K; Li M; Katagiri T; Tsunoda T; Nomura A; Satoh S; Nakamura Y; Furukawa Y
    Hepatology; 2005 Jun; 41(6):1339-48. PubMed ID: 15880566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p38delta/MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in cell motility and invasion.
    Tan FL; Ooi A; Huang D; Wong JC; Qian CN; Chao C; Ooi L; Tan YM; Chung A; Cheow PC; Zhang Z; Petillo D; Yang XJ; Teh BT
    Int J Cancer; 2010 May; 126(10):2353-61. PubMed ID: 19816939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma.
    Nishino R; Honda M; Yamashita T; Takatori H; Minato H; Zen Y; Sasaki M; Takamura H; Horimoto K; Ohta T; Nakanuma Y; Kaneko S
    J Hepatol; 2008 Aug; 49(2):207-16. PubMed ID: 18490072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying survival-associated ceRNA clusters in cholangiocarcinoma.
    Wan M; Zhang FM; Li ZL; Kang PC; Jiang PM; Wang YM; Wang ZD; Zhong XY; Li CL; Wang H; Zhao SY; Cui YF
    Oncol Rep; 2016 Sep; 36(3):1542-50. PubMed ID: 27432084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overlapping signature genes between hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
    Chen F; Li S; Castranova V
    Eur J Gastroenterol Hepatol; 2009 Nov; 21(11):1320-1. PubMed ID: 19826380
    [No Abstract]   [Full Text] [Related]  

  • 11. Abnormal expression of Forkhead Box J2 (FOXJ2) suppresses migration and invasion in extrahepatic cholangiocarcinoma and is associated with prognosis.
    Qiang Y; Wang F; Yan S; Zhang H; Zhu L; Chen Z; Tu F; Wang D; Wang G; Wang W; Chen Z
    Int J Oncol; 2015; 46(6):2449-58. PubMed ID: 25873280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma.
    Chen MH; Lin KJ; Yang WL; Kao YW; Chen TW; Chao SC; Chang PM; Liu CY; Tzeng CH; Chao Y; Chen MH; Yeh CN; Huang CY
    Cancer; 2013 Jan; 119(2):293-303. PubMed ID: 22810956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway.
    Goeppert B; Konermann C; Schmidt CR; Bogatyrova O; Geiselhart L; Ernst C; Gu L; Becker N; Zucknick M; Mehrabi A; Hafezi M; Klauschen F; Stenzinger A; Warth A; Breuhahn K; Renner M; Weichert W; Schirmacher P; Plass C; Weichenhan D
    Hepatology; 2014 Feb; 59(2):544-54. PubMed ID: 24002901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The molecular pathogenesis of cholangiocarcinoma.
    Berthiaume EP; Wands J
    Semin Liver Dis; 2004 May; 24(2):127-37. PubMed ID: 15192786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma.
    Li C; Shen W; Shen S; Ai Z
    Comput Biol Chem; 2013 Dec; 47():192-7. PubMed ID: 24140882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serum levels of variants of transthyretin down-regulation in cholangiocarcinoma.
    Liu L; Wang J; Liu B; Dai S; Wang X; Chen J; Huang L; Xiao X; He D
    J Cell Biochem; 2008 Jun; 104(3):745-55. PubMed ID: 18275060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma.
    Chen Y; Gao W; Luo J; Tian R; Sun H; Zou S
    Oncol Rep; 2011 Feb; 25(2):443-51. PubMed ID: 21165562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of PDZK1IP1, EEF1A2 and RPL41 genes in intrahepatic cholangiocarcinoma.
    Yang G; Zong H
    Mol Med Rep; 2016 Jun; 13(6):4786-90. PubMed ID: 27082702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fibrous stromal component in hepatocellular carcinoma reveals a cholangiocarcinoma-like gene expression trait and epithelial-mesenchymal transition.
    Seok JY; Na DC; Woo HG; Roncalli M; Kwon SM; Yoo JE; Ahn EY; Kim GI; Choi JS; Kim YB; Park YN
    Hepatology; 2012 Jun; 55(6):1776-86. PubMed ID: 22234953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bile duct expression of pancreatic and duodenal homeobox 1 in perihilar cholangiocarcinogenesis.
    Igarashi S; Matsubara T; Harada K; Ikeda H; Sato Y; Sasaki M; Matsui O; Nakanuma Y
    Histopathology; 2012 Aug; 61(2):266-76. PubMed ID: 22594685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.