These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 25606997)

  • 1. Retrieval of frequency spectrum from time-resolved spectroscopic data: comparison of Fourier transform and linear prediction methods.
    Eom I; Yoon E; Baik SH; Lim YS; Joo T
    Opt Express; 2014 Dec; 22(25):30512-9. PubMed ID: 25606997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent electronic and phononic oscillations in single-walled carbon nanotubes.
    Eom I; Park S; Han HS; Yee KJ; Baik SH; Jeong DY; Joo T; Lim YS
    Nano Lett; 2012 Feb; 12(2):769-73. PubMed ID: 22268958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of complex multidimensional optical spectra by linear prediction.
    Swagel E; Paul J; Bristow AD; Wahlstrand JK
    Opt Express; 2021 Nov; 29(23):37525-37533. PubMed ID: 34808822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of linear prediction and singular value decomposition for the analysis of periodic oscillations in coherent excitation spectra of condensed media and solid interfaces.
    Hoogestraat D; Al-Shamery K
    J Phys Condens Matter; 2010 Mar; 22(8):084015. PubMed ID: 21389391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo NMR spectral parameter estimation: a comparison between time and frequency domain methods.
    Joliot M; Mazoyer BM; Huesman RH
    Magn Reson Med; 1991 Apr; 18(2):358-70. PubMed ID: 2046517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses.
    Kim JH; Han KJ; Kim NJ; Yee KJ; Lim YS; Sanders GD; Stanton CJ; Booshehri LG; Hároz EH; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037402. PubMed ID: 19257393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Simultaneous determination of Sm( III) and Y(III) by spectrophotometry with a wavelet packet transform latent variable regression].
    Gao L; Li JM; Ren SX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):758-61. PubMed ID: 17608192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Frequency-domain quantification based on the singular value decomposition and frequency-selection for magnetic resonance spectra].
    Men K; Quan H; Yang P; Cao T; Li W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):249-52. PubMed ID: 20481295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control.
    Xie HB; Zheng YP; Guo JY
    Physiol Meas; 2009 May; 30(5):441-57. PubMed ID: 19349648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic emission source location in plates using wavelet analysis and cross time frequency spectrum.
    Mostafapour A; Davoodi S; Ghareaghaji M
    Ultrasonics; 2014 Dec; 54(8):2055-62. PubMed ID: 25063341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral fitting of NMR spectra using an alternating optimization method with a priori knowledge.
    Bi Z; Bruner AP; Li J; Scott KN; Liu ZS; Stopka CB; Kim HW; Wilson DC
    J Magn Reson; 1999 Sep; 140(1):108-19. PubMed ID: 10479553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study.
    Hata T; Kawai H; Ohto T; Yamashita K
    J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wave packet theory of dynamic stimulated Raman spectra in femtosecond pump-probe spectroscopy.
    Sun Z; Jin Z; Lu J; Zhang DH; Lee SY
    J Chem Phys; 2007 May; 126(17):174104. PubMed ID: 17492854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of local chirality during SWCNT growth: armchair versus zigzag nanotubes.
    Kim J; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Jun; 134(22):9311-9. PubMed ID: 22571240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates.
    Li HB; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Sep; 134(38):15887-96. PubMed ID: 22928987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Fourier transform spectroscopy of single-walled carbon nanotubes and single molecules.
    Korlacki R; Steiner M; Qian H; Hartschuh A; Meixner AJ
    Chemphyschem; 2007 May; 8(7):1049-55. PubMed ID: 17352003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Fourier analysis for phase retrieval of fringe pattern.
    Zhong J; Weng J
    Opt Express; 2010 Dec; 18(26):26806-20. PubMed ID: 21196957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopy of optical transitions and vibrational energies of ∼1 nm HgTe extreme nanowires within single walled carbon nanotubes.
    Spencer JH; Nesbitt JM; Trewhitt H; Kashtiban RJ; Bell G; Ivanov VG; Faulques E; Sloan J; Smith DC
    ACS Nano; 2014 Sep; 8(9):9044-52. PubMed ID: 25163005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy.
    Hildner R; Brinks D; Stefani FD; van Hulst NF
    Phys Chem Chem Phys; 2011 Feb; 13(5):1888-94. PubMed ID: 21240402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.