These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

586 related articles for article (PubMed ID: 25607038)

  • 1. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances.
    Wu C; Arju N; Kelp G; Fan JA; Dominguez J; Gonzales E; Tutuc E; Brener I; Shvets G
    Nat Commun; 2014 May; 5():3892. PubMed ID: 24861488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing viruses using terahertz nano-gap metamaterials.
    Park SJ; Cha SH; Shin GA; Ahn YH
    Biomed Opt Express; 2017 Aug; 8(8):3551-3558. PubMed ID: 28856034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial.
    Zhang J; MacDonald KF; Zheludev NI
    Opt Express; 2013 Nov; 21(22):26721-8. PubMed ID: 24216893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies.
    Fan W; Yan B; Wang Z; Wu L
    Sci Adv; 2016 Aug; 2(8):e1600901. PubMed ID: 27536727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order Fano graphene metamaterials for nanoscale optical sensing.
    Guo X; Hu H; Zhu X; Yang X; Dai Q
    Nanoscale; 2017 Oct; 9(39):14998-15004. PubMed ID: 28956583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials.
    Ishikawa A; Hara S; Tanaka T; Hayashi Y; Tsuruta K
    Sci Rep; 2017 Jun; 7(1):3205. PubMed ID: 28600570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional Fano resonance in a silicon nanosphere dimer.
    Yan J; Liu P; Lin Z; Wang H; Chen H; Wang C; Yang G
    ACS Nano; 2015 Mar; 9(3):2968-80. PubMed ID: 25683067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators.
    Lee E; Seo IC; Jeong HY; An SC; Jun YC
    Sci Rep; 2017 Nov; 7(1):16186. PubMed ID: 29170527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-dielectric metamaterials.
    Jahani S; Jacob Z
    Nat Nanotechnol; 2016 Jan; 11(1):23-36. PubMed ID: 26740041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications.
    Yong Z; Zhang S; Gong C; He S
    Sci Rep; 2016 Apr; 6():24063. PubMed ID: 27046540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metamaterials and Metasurfaces for Sensor Applications.
    Lee Y; Kim SJ; Park H; Lee B
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28749422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fano-Resonant Hybrid Metamaterial for Enhanced Nonlinear Tunability and Hysteresis Behavior.
    Fan Y; He X; Zhang F; Cai W; Li C; Fu Q; Sydorchuk NV; Prosvirnin SL
    Research (Wash D C); 2021; 2021():9754083. PubMed ID: 34485916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators.
    Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E
    Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subwavelength dielectric resonators for nonlinear nanophotonics.
    Koshelev K; Kruk S; Melik-Gaykazyan E; Choi JH; Bogdanov A; Park HG; Kivshar Y
    Science; 2020 Jan; 367(6475):288-292. PubMed ID: 31949078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A d.c. magnetic metamaterial.
    Magnus F; Wood B; Moore J; Morrison K; Perkins G; Fyson J; Wiltshire MC; Caplin D; Cohen LF; Pendry JB
    Nat Mater; 2008 Apr; 7(4):295-7. PubMed ID: 18297077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple dipolar resonant silicon-based metamaterials for high-performance optical switching and sensing.
    Yang H; Zong S; Liu G; Liu X; Fu G; Liu Z
    Opt Express; 2022 Oct; 30(22):40768-40778. PubMed ID: 36299006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.