These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25607138)

  • 21. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media.
    Simsek E
    Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators.
    Lai YC; Chen CK; Yang YH; Yen TJ
    Opt Express; 2012 Jan; 20(3):2876-80. PubMed ID: 22330524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bends and splitters in graphene nanoribbon waveguides.
    Zhu X; Yan W; Mortensen NA; Xiao S
    Opt Express; 2013 Feb; 21(3):3486-91. PubMed ID: 23481806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spontaneous emission in paired graphene plasmonic waveguide structures.
    Zhang L; Fu X; Zhang M; Yang J
    Opt Express; 2013 Apr; 21(7):7897-907. PubMed ID: 23571881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method.
    Liaw JW
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):108-16. PubMed ID: 16478066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zeroth-order transmission resonance in hyperbolic metamaterials.
    Huang Z; Narimanov EE
    Opt Express; 2013 Jun; 21(12):15020-5. PubMed ID: 23787689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes.
    Willingham B; Link S
    Opt Express; 2011 Mar; 19(7):6450-61. PubMed ID: 21451673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-threshold supercontinuum generation in glasses doped with silver nanoparticles.
    Driben R; Husakou A; Herrmann J
    Opt Express; 2009 Sep; 17(20):17989-95. PubMed ID: 19907588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Loss-compensated and active hyperbolic metamaterials.
    Ni X; Ishii S; Thoreson MD; Shalaev VM; Han S; Lee S; Kildishev AV
    Opt Express; 2011 Dec; 19(25):25242-54. PubMed ID: 22273915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss.
    Marini A; Skryabin DV; Malomed B
    Opt Express; 2011 Mar; 19(7):6616-22. PubMed ID: 21451689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffraction effects in the propagation of radiation in polarizable layers.
    Dallacasa V
    J Nanosci Nanotechnol; 2008 Feb; 8(2):595-601. PubMed ID: 18464376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of retardation on localized surface plasmon resonances in a metallic nanorod.
    Davis TJ; Vernon KC; Gómez DE
    Opt Express; 2009 Dec; 17(26):23655-63. PubMed ID: 20052075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains.
    Crozier KB; Togan E; Simsek E; Yang T
    Opt Express; 2007 Dec; 15(26):17482-93. PubMed ID: 19551041
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface.
    Yang T; Crozier KB
    Opt Express; 2008 Jun; 16(12):8570-80. PubMed ID: 18545570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electromagnetic wave scattering from a rough interface above a chiral medium: generalized field transforms.
    Crittenden PE; Bahar E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):325-34. PubMed ID: 23456108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF; Lin YJ; Tsai DP
    Opt Express; 2010 Feb; 18(4):3510-8. PubMed ID: 20389360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Picosecond time scale modification of forward scattered light induced by absorption inside particles.
    Kervella M; d'Abzac FX; Hache F; Hespel L; Dartigalongue T
    Opt Express; 2012 Jan; 20(1):32-41. PubMed ID: 22274326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Huygens-Fresnel principle for surface plasmons.
    Teperik TV; Archambault A; Marquier F; Greffet JJ
    Opt Express; 2009 Sep; 17(20):17483-90. PubMed ID: 19907532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fano interference between localized plasmons and interface reflections.
    Svedendahl M; Käll M
    ACS Nano; 2012 Aug; 6(8):7533-9. PubMed ID: 22808902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling electromagnetic scattering of a cavity by transformation media.
    Wang S; Liu S
    Opt Express; 2012 Mar; 20(6):6777-87. PubMed ID: 22418561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.