BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 25607144)

  • 1. Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination.
    Grulkowski I; Szulzycki K; Wojtkowski M
    Opt Express; 2014 Dec; 22(26):31746-60. PubMed ID: 25607144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous multiple-depths en-face optical coherence tomography using multiple signal excitation of acousto-optic deflectors.
    Zurauskas M; Rogers J; Podoleanu AG
    Opt Express; 2013 Jan; 21(2):1925-36. PubMed ID: 23389175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion compensation in high-speed optical coherence tomography by acousto-optic modulation.
    Xie T; Wang Z; Pan Y
    Appl Opt; 2005 Jul; 44(20):4272-80. PubMed ID: 16045215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetric structured illumination microscopy enabled by a tunable-focus lens.
    Hinsdale T; Malik BH; Olsovsky C; Jo JA; Maitland KC
    Opt Lett; 2015 Nov; 40(21):4943-6. PubMed ID: 26512489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive optical probe design for optical coherence tomography and microscopy using tunable optics.
    Choi M; Lee S; Chang JH; Lee E; Jung KD; Kim W
    Opt Express; 2013 Jan; 21(2):1567-73. PubMed ID: 23389140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wide-band acousto-optic deflectors with high efficiency for visible range fringe pattern projector.
    Dupont S; Kastelik JC; Causa F
    Rev Sci Instrum; 2007 Oct; 78(10):105102. PubMed ID: 17979453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics.
    Duocastella M; Sun B; Arnold CB
    J Biomed Opt; 2012 May; 17(5):050505. PubMed ID: 22612120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography.
    Yao X; Gan Y; Marboe CC; Hendon CP
    J Biomed Opt; 2016 Jun; 21(6):61006. PubMed ID: 27001162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroboscopic ultrahigh-resolution full-field optical coherence tomography.
    Moneron G; Boccara AC; Dubois A
    Opt Lett; 2005 Jun; 30(11):1351-3. PubMed ID: 15981530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a liquid lens enabled in vivo optical coherence microscope.
    Murali S; Meemon P; Lee KS; Kuhn WP; Thompson KP; Rolland JP
    Appl Opt; 2010 Jun; 49(16):D145-56. PubMed ID: 20517356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probe alignment and design issues of microelectromechanical system based optical coherence tomography endoscopic imaging.
    Duan C; Sun J; Samuelson S; Xie H
    Appl Opt; 2013 Sep; 52(26):6589-98. PubMed ID: 24085137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-channel spectral-domain optical-coherence tomography system based on 3 × 3 fiber coupler for extended imaging range.
    Dai C; Fan S; Chai X; Li Y; Ren Q; Xi P; Zhou C
    Appl Opt; 2014 Aug; 53(24):5375-9. PubMed ID: 25321108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-reference swept-source optical coherence tomography of high operation flexibility.
    Chi TT; Wu CT; Liao CC; Tu YC; Kiang YW; Yang CC
    Opt Express; 2012 Dec; 20(27):28418-30. PubMed ID: 23263077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging.
    Jeong HW; Lee SW; Kim BM
    Opt Express; 2012 Aug; 20(17):19148-59. PubMed ID: 23038555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror.
    Wang D; Fu L; Wang X; Gong Z; Samuelson S; Duan C; Jia H; Ma JS; Xie H
    J Biomed Opt; 2013 Aug; 18(8):86005. PubMed ID: 23942630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography.
    Mo J; de Groot M; de Boer JF
    Opt Express; 2013 Apr; 21(8):10048-61. PubMed ID: 23609710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence tomography for whole eye segment imaging.
    Dai C; Zhou C; Fan S; Chen Z; Chai X; Ren Q; Jiao S
    Opt Express; 2012 Mar; 20(6):6109-15. PubMed ID: 22418490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acousto-optical coherence tomography using random phase jumps on ultrasound and light.
    Lesaffre M; Farahi S; Gross M; Delaye P; Boccara C; Ramaz F
    Opt Express; 2009 Sep; 17(20):18211-8. PubMed ID: 19907612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics.
    Bechtold P; Hohenstein R; Schmidt M
    Opt Express; 2013 Jun; 21(12):14627-35. PubMed ID: 23787650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of basal cell carcinoma using dynamic focus optical coherence tomography.
    Avanaki MR; Hojjatoleslami A; Sira M; Schofield JB; Jones C; Podoleanu AG
    Appl Opt; 2013 Apr; 52(10):2116-24. PubMed ID: 23545967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.