BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25607170)

  • 1. Plasmonic amplification for bioassays with epi-fluorescence readout.
    Bauch M; Hageneder S; Dostalek J
    Opt Express; 2014 Dec; 22(26):32026-38. PubMed ID: 25607170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compact surface plasmon-enhanced fluorescence biochip.
    Toma K; Vala M; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2013 Apr; 21(8):10121-32. PubMed ID: 23609717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bloch surface wave-enhanced fluorescence biosensor.
    Toma K; Descrovi E; Toma M; Ballarini M; Mandracci P; Giorgis F; Mateescu A; Jonas U; Knoll W; Dostálek J
    Biosens Bioelectron; 2013 May; 43():108-14. PubMed ID: 23291217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic band gap structures for surface-enhanced Raman scattering.
    Kocabas A; Ertas G; Senlik SS; Aydinli A
    Opt Express; 2008 Aug; 16(17):12469-77. PubMed ID: 18711483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.
    Hageneder S; Bauch M; Dostalek J
    Talanta; 2016 Aug; 156-157():225-231. PubMed ID: 27260457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large molecular fluorescence enhancement by a nanoaperture with plasmonic corrugations.
    Aouani H; Mahboub O; Devaux E; Rigneault H; Ebbesen TW; Wenger J
    Opt Express; 2011 Jul; 19(14):13056-62. PubMed ID: 21747457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles.
    Ng MY; Liu WC
    Opt Express; 2009 Mar; 17(7):5867-78. PubMed ID: 19333356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-channel hyperspectral fluorescence detection excited by coupled plasmon-waveguide resonance.
    Du C; Liu L; Zhang L; Guo J; Guo J; Ma H; He Y
    Sensors (Basel); 2013 Oct; 13(10):13892-902. PubMed ID: 24129023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporous gold plasmonic structures for sensing applications.
    Ruffato G; Romanato F; Garoli D; Cattarin S
    Opt Express; 2011 Jul; 19(14):13164-70. PubMed ID: 21747470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating waveguide biosensor.
    Li S; Amstutz P; Tang CM; Hang J; Zhu P; Zhang Y; Shelton DR; Karns JS
    Methods Mol Biol; 2009; 503():389-401. PubMed ID: 19151954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-diffractive grating for surface plasmon biosensors with direct back-side excitation.
    Hageneder S; Fossati S; Ferrer NG; Güngörmez B; Auer SK; Dostalek J
    Opt Express; 2020 Dec; 28(26):39770-39780. PubMed ID: 33379519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical microscopic observation of fluorescence enhanced by grating-coupled surface plasmon resonance.
    Tawa K; Hori H; Kintaka K; Kiyosue K; Tatsu Y; Nishii J
    Opt Express; 2008 Jun; 16(13):9781-90. PubMed ID: 18575546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long range surface plasmon-enhanced fluorescence spectroscopy for the detection of aflatoxin M1 in milk.
    Wang Y; Dostálek J; Knoll W
    Biosens Bioelectron; 2009 Mar; 24(7):2264-7. PubMed ID: 19095432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors.
    Kim D
    Appl Opt; 2005 Jun; 44(16):3218-23. PubMed ID: 15943255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased surface plasmon resonance sensitivity with the use of double Fourier harmonic gratings.
    Bonod N; Popov E; McPhedran RC
    Opt Express; 2008 Aug; 16(16):11691-702. PubMed ID: 18679438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperspectral imaging of diffracted surface plasmons.
    Lepage D; Jiménez A; Carrier D; Beauvais J; Dubowski JJ
    Opt Express; 2010 Dec; 18(26):27327-35. PubMed ID: 21197011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting surface wave-coupled emission with subsurface dielectric gratings.
    Qiu D; Zhang D; Chen Y; Zhu L; Han L; Wang P; Ming H; Badugu R; Lakowicz JR
    Opt Lett; 2014 Aug; 39(15):4341-4. PubMed ID: 25078172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a complete plasmonic grating-based sensor and its application for self-assembled monolayer detection.
    Perino M; Pasqualotto E; De Toni A; Garoli D; Scaramuzza M; Zilio P; Ongarello T; Paccagnella A; Romanato F
    Appl Opt; 2014 Sep; 53(26):5969-76. PubMed ID: 25321677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.