These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 25607364)

  • 1. Structure of the key species in the enzymatic oxidation of methane to methanol.
    Banerjee R; Proshlyakov Y; Lipscomb JD; Proshlyakov DA
    Nature; 2015 Feb; 518(7539):431-4. PubMed ID: 25607364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear Resonance Vibrational Spectroscopic Definition of the Fe(IV)
    Jacobs AB; Banerjee R; Deweese DE; Braun A; Babicz JT; Gee LB; Sutherlin KD; Böttger LH; Yoda Y; Saito M; Kitao S; Kobayashi Y; Seto M; Tamasaku K; Lipscomb JD; Park K; Solomon EI
    J Am Chem Soc; 2021 Oct; 143(39):16007-16029. PubMed ID: 34570980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A diiron(IV) complex that cleaves strong C-H and O-H bonds.
    Wang D; Farquhar ER; Stubna A; Münck E; Que L
    Nat Chem; 2009 May; 1(2):145-50. PubMed ID: 19885382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dioxygen activation in soluble methane monooxygenase.
    Tinberg CE; Lippard SJ
    Acc Chem Res; 2011 Apr; 44(4):280-8. PubMed ID: 21391602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of methane monooxygenase catalysis based on size exclusion and quantum tunneling.
    Zheng H; Lipscomb JD
    Biochemistry; 2006 Feb; 45(6):1685-92. PubMed ID: 16460015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): a DFT and QM/MM study.
    Yoshizawa K; Shiota Y
    J Am Chem Soc; 2006 Aug; 128(30):9873-81. PubMed ID: 16866545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A synthetic precedent for the [FeIV2(mu-O)2] diamond core proposed for methane monooxygenase intermediate Q.
    Xue G; Wang D; De Hont R; Fiedler AT; Shan X; Münck E; Que L
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20713-8. PubMed ID: 18093922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometric Formation of an Oxoiron(IV) Complex by a Soluble Methane Monooxygenase Type Activation of O
    Kass D; Corona T; Warm K; Braun-Cula B; Kuhlmann U; Bill E; Mebs S; Swart M; Dau H; Haumann M; Hildebrandt P; Ray K
    J Am Chem Soc; 2020 Apr; 142(13):5924-5928. PubMed ID: 32168447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase.
    Shu L; Nesheim JC; Kauffmann K; Münck E; Lipscomb JD; Que L
    Science; 1997 Jan; 275(5299):515-8. PubMed ID: 8999792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
    Lee D; Lippard SJ
    Inorg Chem; 2002 Feb; 41(4):827-37. PubMed ID: 11849083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase.
    Yoshizawa K
    J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Explorations of the nonheme high-valent iron-oxo landscape: crystal structure of a synthetic complex with an [FeIV2(μ-O)
    Rohde GT; Xue G; Que L
    Faraday Discuss; 2022 May; 234(0):109-128. PubMed ID: 35171169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-triggered activation of a synthetic [Fe2(μ-O)2] diamond core for C-H bond cleavage.
    Xue G; Pokutsa A; Que L
    J Am Chem Soc; 2011 Oct; 133(41):16657-67. PubMed ID: 21899336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases.
    Tucci FJ; Rosenzweig AC
    Chem Rev; 2024 Feb; 124(3):1288-1320. PubMed ID: 38305159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Leeuwenhoek Lecture 2000 the natural and unnatural history of methane-oxidizing bacteria.
    Dalton H
    Philos Trans R Soc Lond B Biol Sci; 2005 Jun; 360(1458):1207-22. PubMed ID: 16147517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase.
    Vorobev AV; Baani M; Doronina NV; Brady AL; Liesack W; Dunfield PF; Dedysh SN
    Int J Syst Evol Microbiol; 2011 Oct; 61(Pt 10):2456-2463. PubMed ID: 21097638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient intermediates of the methane monooxygenase catalytic cycle.
    Lee SK; Nesheim JC; Lipscomb JD
    J Biol Chem; 1993 Oct; 268(29):21569-77. PubMed ID: 8408008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An abiotic analogue of the diiron(IV)oxo "diamond core" of soluble methane monooxygenase generated by direct activation of O2 in aqueous Fe(II)/EDTA solutions: thermodynamics and electronic structure.
    Bernasconi L; Belanzoni P; Baerends EJ
    Phys Chem Chem Phys; 2011 Sep; 13(33):15272-82. PubMed ID: 21776512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.