These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25607677)

  • 1. Study of the sludge reduction in an oxic-settling-anaerobic activated sludge process based on UNITANK.
    Sun LP; Chen JF; Guo WZ; Fu XP; Tan JX; Wang TJ
    Water Sci Technol; 2015; 71(1):111-6. PubMed ID: 25607677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The investigation of the sludge reduction efficiency and mechanisms in oxic-settling-anaerobic (OSA) process.
    Demir Ö; Filibeli A
    Water Sci Technol; 2016; 73(10):2311-23. PubMed ID: 27191551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous in-situ sludge reduction and nutrient removal in an A(2)MO-M system: Performances, mechanisms, and modeling with an extended ASM2d model.
    Yang S; Guo W; Chen Y; Peng S; Du J; Zheng H; Feng X; Ren N
    Water Res; 2016 Jan; 88():524-537. PubMed ID: 26524657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement and prediction of OSA system performance in sludge reduction through integration with thermal and mechanical treatment.
    Nazif S; Mehrdadi N; Zare S; Mosavari S
    Water Sci Technol; 2016 Nov; 74(9):2087-2096. PubMed ID: 27842028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new oxic-settling-anaerobic (NOSA(®)) activated sludge process for minimizing excess sludge in secondary biological treatment plants: a pilot-scale evaluation of the absorption-biodegradation process.
    Wu K; Li SY; Jiang F; Wang J; Liu GL; Chen GH
    Water Sci Technol; 2013; 68(3):530-6. PubMed ID: 23925179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new sulfidogenic oxic-settling anaerobic (SOSA) process: The effects of sulfur-cycle bioaugmentation on the operational performance, sludge properties and microbial communities.
    Huang H; Ekama GA; Biswal BK; Dai J; Jiang F; Chen GH; Wu D
    Water Res; 2019 Oct; 162():30-42. PubMed ID: 31254884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Performance of treating wastewater and anti-shockloading in oxic-settling-anaerobic (OSA) process for minimization of excess sludge].
    Wang JF; Jin WB; Zhao QL; Liu ZG; Lin JK
    Huan Jing Ke Xue; 2007 Nov; 28(11):2488-93. PubMed ID: 18290471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SRT contributes significantly to sludge reduction in the OSA-based activated sludge process.
    Wang Y; Li Y; Wu G
    Environ Technol; 2017 Feb; 38(3):305-315. PubMed ID: 27241886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of sewage sludge and N
    Mannina G; Cosenza A; Di Trapani D; Gulhan H; Mineo A; Bosco Mofatto PM
    Sci Total Environ; 2024 Jan; 906():167793. PubMed ID: 37838037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modified oxic-settling-anaerobic activated sludge process using gravity thickening for excess sludge reduction.
    Wang J; Li SY; Jiang F; Wu K; Liu GL; Lu H; Chen GH
    Sci Rep; 2015 Sep; 5():13972. PubMed ID: 26350761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights on mechanisms of excess sludge minimization in an oxic-settling-anaerobic process under different operating conditions and plant configurations.
    Corsino SF; Carabillò M; Cosenza A; De Marines F; Di Trapani D; Traina F; Torregrossa M; Viviani G
    Chemosphere; 2023 Jan; 312(Pt 1):137090. PubMed ID: 36334748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between ozonation and the OSA process: analysis of excess sludge reduction and biomass activity in two different pilot plants.
    Torregrossa M; Di Bella G; Di Trapani D
    Water Sci Technol; 2012; 66(1):185-92. PubMed ID: 22678217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Performance and mechanism of excess sludge reduction in an OSA (oxic-settling-anaerobic) process].
    Jin WB; Wang JF; Zhao QL; Lin JK
    Huan Jing Ke Xue; 2008 Mar; 29(3):726-32. PubMed ID: 18649535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of sludge interchange times on the oxic-settling-anoxic process.
    Sun L; Randall CW; Novak JT
    Water Environ Res; 2010 Jun; 82(6):519-23. PubMed ID: 20572459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process (OSA process).
    Chen GH; An KJ; Saby S; Brois E; Djafer M
    Water Res; 2003 Sep; 37(16):3855-66. PubMed ID: 12909103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of wastewater treatment processes on the sludge reduction system with 2,4-dichlorophenol: Sequencing batch reactor and anaerobic-anoxic-oxic process.
    Han Y; Sun Y; Chen H; Guo X; Yu C; Li Y; Liu J; Xiao B
    J Biotechnol; 2017 Jun; 251():99-105. PubMed ID: 28450258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential for simultaneous nitrogen removal and sludge reduction of the oxic-settling-anaerobic process operated as a dual fed sequencing batch reactor.
    Cantekin C; Taybuga ES; Yagci N; Orhon D
    J Environ Manage; 2019 Oct; 247():394-400. PubMed ID: 31254755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characterisation of excess sludge reduction in an anoxic + oxic-settling-anaerobic activated sludge process].
    Gao X; Lu YH; Guo JS
    Huan Jing Ke Xue; 2009 May; 30(5):1475-80. PubMed ID: 19558121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process.
    Saby S; Djafer M; Chen GH
    Water Res; 2003 Jan; 37(1):11-20. PubMed ID: 12465783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.