BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 2560768)

  • 1. Photobleaching and cyclic GMP dependences of rhodopsin phosphorylation in rod outer segment.
    Gupta BD
    Indian J Biochem Biophys; 1989 Oct; 26(5):305-10. PubMed ID: 2560768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin phosphorylation in developing normal and degenerative mouse retinas.
    Shuster TA; Farber DB
    Invest Ophthalmol Vis Sci; 1986 Feb; 27(2):264-8. PubMed ID: 3003003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods.
    Liebman PA; Sitaramayya A
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():215-25. PubMed ID: 6328918
    [No Abstract]   [Full Text] [Related]  

  • 4. Stimulation of rhodopsin phosphorylation by guanine nucleotides in rod outer segments.
    Swarup G; Garbers DL
    Biochemistry; 1983 Mar; 22(5):1102-6. PubMed ID: 6301538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Rhodopsin photo-oxidation: oxygen consumption and spectrum of activity].
    Starostin AV; Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1988; 33(3):452-5. PubMed ID: 3262376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular mechanisms of photoreception. VI. Cyclic nucleotide- and light-dependent phosphorylation of rod outer segment proteins in the frog retina].
    Krapivinskiĭ GB; Malenev AL; Fesenko EE
    Mol Biol (Mosk); 1987; 21(1):116-24. PubMed ID: 3033471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the rate constant of cyclic GMP hydrolysis by activated phosphodiesterase in photoreceptors.
    Reingruber J; Holcman D
    J Chem Phys; 2008 Oct; 129(14):145102. PubMed ID: 19045167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of light, ATP and GTP on the binding of cGMP to rod outer segment membranes in the frog retina. Possible mechanism of receptor stimulation].
    Fesenko EE; Krapivinskiĭ GB
    Dokl Akad Nauk SSSR; 1986; 287(5):1255-9. PubMed ID: 3009122
    [No Abstract]   [Full Text] [Related]  

  • 10. The rod outer segment phospholipid/opsin ratio of rats maintained in darkness or cyclic light.
    Organisciak DT; Noell WK
    Invest Ophthalmol Vis Sci; 1977 Feb; 16(2):188-90. PubMed ID: 832982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Retinal-sensitized photo-oxidation of rhodopsin].
    Starostin AV; Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1985; 30(6):995-9. PubMed ID: 4074767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of rhodopsin catalyzed G-protein GTP-binding using [35S] GTP gamma S--effects of regeneration and hydroxylamine.
    Cook NJ; Pellicone C; Virmaux N
    Biochem Int; 1985 Apr; 10(4):647-53. PubMed ID: 3927920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of rhodopsin and isorhodopsin in rod outer segment preparations: absence of effect of solvent parameters.
    Lacy ME; Veronee CD; Crouch RK
    Physiol Chem Phys Med NMR; 1984; 16(4):275-81. PubMed ID: 6240663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phosphorylation-sensitive anti-rhodopsin monoclonal antibody reveals light-induced phosphorylation of rhodopsin in the photoreceptor cell body.
    Hicks D; Barnstable CJ
    Eur J Cell Biol; 1987 Oct; 44(2):341-7. PubMed ID: 3691553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent Na(+)-Ca2+ exchange in retinal rod discs.
    Volotovski ID; Khovratovich VI; Orlov SN
    Gen Physiol Biophys; 1989 Dec; 8(6):589-601. PubMed ID: 2482219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin phosphorylation suggests biochemical heterogeneities of retinal rod disks.
    Shichi H; Williams TC
    J Supramol Struct; 1979; 12(4):419-24. PubMed ID: 317716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual transduction in rod outer segments.
    Takemoto DJ; Cunnick JM
    Cell Signal; 1990; 2(2):99-104. PubMed ID: 2169289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shift in the relation between flash-induced metarhodopsin I and metarhodpsin II within the first 10% rhodopsin bleaching in bovine disc membranes.
    Emeis D; Hofmann KP
    FEBS Lett; 1981 Dec; 136(2):201-7. PubMed ID: 7327258
    [No Abstract]   [Full Text] [Related]  

  • 19. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes.
    Tyminski PN; Latimer LH; O'Brien DF
    Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Aggregation of rhodopsin molecules during damaging exposure of photoreceptor membranes to light].
    Pogozheva ID; Kuznetsov VA; Fedorovich IB; Livshits VA; Ostrovskiĭ MA
    Biofizika; 1981; 26(4):692-700. PubMed ID: 6269656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.