BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25607728)

  • 1. Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots.
    Wu M; Algar WR
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2535-45. PubMed ID: 25607728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption.
    Petryayeva E; Jeen T; Algar WR
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30359-30372. PubMed ID: 28846381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the Steric Impact of Surface Ligands on the Proteolytic Turnover of Quantum Dot-Peptide Conjugates.
    Krause KD; Rees K; Algar WR
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimicking Cell Surface Enhancement of Protease Activity on the Surface of a Quantum Dot Nanoparticle.
    Jeen T; Algar WR
    Bioconjug Chem; 2018 Nov; 29(11):3783-3792. PubMed ID: 30362700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots.
    Díaz SA; Breger JC; Medintz IL
    Methods Enzymol; 2016; 571():19-54. PubMed ID: 27112393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-molecule ligands strongly affect the Förster resonance energy transfer between a quantum dot and a fluorescent protein.
    Zhang Y; Zhang H; Hollins J; Webb ME; Zhou D
    Phys Chem Chem Phys; 2011 Nov; 13(43):19427-36. PubMed ID: 21971088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary electrophoretic studies on displacement and proteolytic cleavage of surface bound oligohistidine peptide on quantum dots.
    Wang J; Xia J
    Anal Chim Acta; 2012 Jan; 709():120-7. PubMed ID: 22122940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity.
    Krause KD; Rees K; Darwish GH; Bernal-Escalante J; Algar WR
    ACS Nano; 2024 Jul; 18(26):17018-17030. PubMed ID: 38845136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms.
    Petryayeva E; Algar WR
    Anal Chem; 2013 Sep; 85(18):8817-25. PubMed ID: 23980758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.
    Petryayeva E; Algar WR
    Analyst; 2015 Jun; 140(12):4037-45. PubMed ID: 25924885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots.
    Petryayeva E; Algar WR
    Anal Chem; 2014 Mar; 86(6):3195-202. PubMed ID: 24571675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating Surface Ligand-Dependent Kinetic Enhancement of Proteolytic Activity at Surface-Modified Quantum Dots.
    Díaz SA; Sen S; Boeneman Gemmill K; Brown CW; Oh E; Susumu K; Stewart MH; Breger JC; Lasarte Aragonés G; Field LD; Deschamps JR; Král P; Medintz IL
    ACS Nano; 2017 Jun; 11(6):5884-5896. PubMed ID: 28603969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteolytic activity at quantum dot-conjugates: kinetic analysis reveals enhanced enzyme activity and localized interfacial "hopping".
    Algar WR; Malonoski A; Deschamps JR; Blanco-Canosa JB; Susumu K; Stewart MH; Johnson BJ; Dawson PE; Medintz IL
    Nano Lett; 2012 Jul; 12(7):3793-802. PubMed ID: 22731798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage.
    Fan C; Shi Z; Pan Y; Song Z; Zhang W; Zhao X; Tian F; Peng B; Qin W; Cai Y; Qian X
    Anal Chem; 2014 Feb; 86(3):1452-8. PubMed ID: 24447065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates.
    Medintz IL; Clapp AR; Brunel FM; Tiefenbrunn T; Uyeda HT; Chang EL; Deschamps JR; Dawson PE; Mattoussi H
    Nat Mater; 2006 Jul; 5(7):581-9. PubMed ID: 16799548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioconjugation of trypsin onto gold nanoparticles: effect of surface chemistry on bioactivity.
    Hinterwirth H; Lindner W; Lämmerhofer M
    Anal Chim Acta; 2012 Jul; 733():90-7. PubMed ID: 22704381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.