These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25607805)

  • 1. Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts.
    Johnson ME; Mahoney JM; Taroni J; Sargent JL; Marmarelis E; Wu MR; Varga J; Hinchcliff ME; Whitfield ML
    PLoS One; 2015; 10(1):e0114017. PubMed ID: 25607805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms.
    Mahoney JM; Taroni J; Martyanov V; Wood TA; Greene CS; Pioli PA; Hinchcliff ME; Whitfield ML
    PLoS Comput Biol; 2015 Jan; 11(1):e1004005. PubMed ID: 25569146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Egr-1 induces a profibrotic injury/repair gene program associated with systemic sclerosis.
    Bhattacharyya S; Sargent JL; Du P; Lin S; Tourtellotte WG; Takehara K; Whitfield ML; Varga J
    PLoS One; 2011; 6(9):e23082. PubMed ID: 21931594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular subsets in the gene expression signatures of scleroderma skin.
    Milano A; Pendergrass SA; Sargent JL; George LK; McCalmont TH; Connolly MK; Whitfield ML
    PLoS One; 2008 Jul; 3(7):e2696. PubMed ID: 18648520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A genomic meta-analysis of clinical variables and their association with intrinsic molecular subsets in systemic sclerosis.
    Franks JM; Toledo DM; Martyanov V; Wang Y; Huang S; Wood TA; Spino C; Chung L; Denton CP; Derrett-Smith E; Gordon JK; Spiera R; Domsic R; Hinchcliff M; Khanna D; Whitfield ML
    Rheumatology (Oxford); 2022 Dec; 62(1):19-28. PubMed ID: 35751592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compendium of skin molecular signatures identifies key pathological features associated with fibrosis in systemic sclerosis.
    Moon SJ; Bae JM; Park KS; Tagkopoulos I; Kim KJ
    Ann Rheum Dis; 2019 Jun; 78(6):817-825. PubMed ID: 30952646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear receptor constitutive androstane receptor/NR1I3 enhances the profibrotic effects of transforming growth factor β and contributes to the development of experimental dermal fibrosis.
    Avouac J; Palumbo-Zerr K; Ruzehaji N; Tomcik M; Zerr P; Dees C; Distler A; Beyer C; Schneider H; Distler O; Schett G; Allanore Y; Distler JH
    Arthritis Rheumatol; 2014 Nov; 66(11):3140-50. PubMed ID: 25155144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta.
    Bhattacharyya S; Ghosh AK; Pannu J; Mori Y; Takagawa S; Chen G; Trojanowska M; Gilliam AC; Varga J
    Arthritis Rheum; 2005 Apr; 52(4):1248-58. PubMed ID: 15818659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal induction of transforming growth factor beta signaling in fibroblasts of mice recapitulates clinical, histologic, and biochemical features of scleroderma.
    Sonnylal S; Denton CP; Zheng B; Keene DR; He R; Adams HP; Vanpelt CS; Geng YJ; Deng JM; Behringer RR; de Crombrugghe B
    Arthritis Rheum; 2007 Jan; 56(1):334-44. PubMed ID: 17195237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic interleukin-6 blockade reverses transforming growth factor-beta pathway activation in dermal fibroblasts: insights from the faSScinate clinical trial in systemic sclerosis.
    Denton CP; Ong VH; Xu S; Chen-Harris H; Modrusan Z; Lafyatis R; Khanna D; Jahreis A; Siegel J; Sornasse T
    Ann Rheum Dis; 2018 Sep; 77(9):1362-1371. PubMed ID: 29853453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene Expression Signatures in Inflammatory and Sclerotic Morphea Skin and Sera Distinguish Morphea from Systemic Sclerosis.
    Chen HW; Zhu JL; Martyanov V; Tsoi LC; Johnson ME; Barber G; Popovich D; O'Brien JC; Coias J; Cyrus N; Malviya N; Florez-Pollack S; Kunzler E; Hosler GA; Gudjonsson JE; Khanna D; Whitfield M; Jacobe HT
    J Invest Dermatol; 2023 Oct; 143(10):1886-1895.e10. PubMed ID: 37028702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress in scleroderma: maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway.
    Sambo P; Baroni SS; Luchetti M; Paroncini P; Dusi S; Orlandini G; Gabrielli A
    Arthritis Rheum; 2001 Nov; 44(11):2653-64. PubMed ID: 11710721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis.
    Hinchcliff M; Huang CC; Wood TA; Matthew Mahoney J; Martyanov V; Bhattacharyya S; Tamaki Z; Lee J; Carns M; Podlusky S; Sirajuddin A; Shah SJ; Chang RW; Lafyatis R; Varga J; Whitfield ML
    J Invest Dermatol; 2013 Aug; 133(8):1979-89. PubMed ID: 23677167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited cutaneous systemic sclerosis skin demonstrates distinct molecular subsets separated by a cardiovascular development gene expression signature.
    Derrett-Smith EC; Martyanov V; Chighizola CB; Moinzadeh P; Campochiaro C; Khan K; Wood TA; Meroni PL; Abraham DJ; Ong VH; Lafyatis R; Whitfield ML; Denton CP
    Arthritis Res Ther; 2017 Jul; 19(1):156. PubMed ID: 28676069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scleroderma keratinocytes promote fibroblast activation independent of transforming growth factor beta.
    McCoy SS; Reed TJ; Berthier CC; Tsou PS; Liu J; Gudjonsson JE; Khanna D; Kahlenberg JM
    Rheumatology (Oxford); 2017 Nov; 56(11):1970-1981. PubMed ID: 28968684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis.
    Maurer B; Stanczyk J; Jüngel A; Akhmetshina A; Trenkmann M; Brock M; Kowal-Bielecka O; Gay RE; Michel BA; Distler JH; Gay S; Distler O
    Arthritis Rheum; 2010 Jun; 62(6):1733-43. PubMed ID: 20201077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acyltransferase skinny hedgehog regulates TGFβ-dependent fibroblast activation in SSc.
    Liang R; Kagwiria R; Zehender A; Dees C; Bergmann C; Ramming A; Krasowska D; Michalska-Jakubus M; Kreuter A; Kraner ME; Schett G; Distler JHW
    Ann Rheum Dis; 2019 Sep; 78(9):1269-1273. PubMed ID: 31177096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulator combinations identify systemic sclerosis patients with more severe disease.
    Wang Y; Franks JM; Yang M; Toledo DM; Wood TA; Hinchcliff M; Whitfield ML
    JCI Insight; 2020 Sep; 5(17):. PubMed ID: 32721949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.
    Taroni JN; Greene CS; Martyanov V; Wood TA; Christmann RB; Farber HW; Lafyatis RA; Denton CP; Hinchcliff ME; Pioli PA; Mahoney JM; Whitfield ML
    Genome Med; 2017 Mar; 9(1):27. PubMed ID: 28330499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Optimal Mouse Models of Systemic Sclerosis by Interspecies Comparative Genomics.
    Sargent JL; Li Z; Aliprantis AO; Greenblatt M; Lemaire R; Wu MH; Wei J; Taroni J; Harris A; Long KB; Burgwin C; Artlett CM; Blankenhorn EP; Lafyatis R; Varga J; Clark SH; Whitfield ML
    Arthritis Rheumatol; 2016 Aug; 68(8):2003-15. PubMed ID: 26945694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.