These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25607868)

  • 1. Three-dimensional imaging based on electronically adaptive liquid crystal lens.
    Li H; Pan F; Wu Y; Zhang Y; Xie X
    Appl Opt; 2014 Nov; 53(33):7916-23. PubMed ID: 25607868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens.
    Chen CW; Cho M; Huang YP; Javidi B
    Opt Lett; 2012 Oct; 37(19):4125-7. PubMed ID: 23027300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal.
    Hui L; Fan P; Yuntao W; Yanduo Z; Xiaolin X
    Appl Opt; 2016 Jan; 55(1):140-7. PubMed ID: 26835633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes.
    Li H; Peng J; Pan F; Wu Y; Zhang Y; Xie X
    Opt Express; 2018 May; 26(10):12441-12454. PubMed ID: 29801282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional and three-dimensional transparent screens based on lens-array holographic optical elements.
    Hong K; Yeom J; Jang C; Li G; Hong J; Lee B
    Opt Express; 2014 Jun; 22(12):14363-74. PubMed ID: 24977533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system.
    Hassanfiroozi A; Huang YP; Javidi B; Shieh HP
    Opt Express; 2016 Apr; 24(8):8527-38. PubMed ID: 27137290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integral three-dimensional image capture equipment with closely positioned lens array and image sensor.
    Arai J; Yamashita T; Miura M; Hiura H; Okaichi N; Okano F; Funatsu R
    Opt Lett; 2013 Jun; 38(12):2044-6. PubMed ID: 23938971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in imaging contrast feature of liquid crystal lens with the dopant of multi-walled carbon nanotubes.
    Li H; Pan F; Wu Y; Zhang Y; Xie X
    Appl Opt; 2017 Aug; 56(23):6655-6662. PubMed ID: 29047958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrically tunable imaging system with separable focus and zoom functions using composite liquid crystal lenses.
    Chen MS; Chen PJ; Chen M; Lin YH
    Opt Express; 2014 May; 22(10):11427-35. PubMed ID: 24921264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.
    Chang YC; Jen TH; Ting CH; Huang YP
    Opt Express; 2014 Feb; 22(3):2714-24. PubMed ID: 24663563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications.
    Lin YH; Chen HS
    Opt Express; 2013 Apr; 21(8):9428-36. PubMed ID: 23609654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Projection-type dual-view three-dimensional display system based on integral imaging.
    Jeong J; Lee CK; Hong K; Yeom J; Lee B
    Appl Opt; 2014 Sep; 53(27):G12-8. PubMed ID: 25322119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth from defocus measurement method based on liquid crystal lens.
    Ye M; Chen X; Li Q; Zeng J; Yu S
    Opt Express; 2018 Oct; 26(22):28413-28420. PubMed ID: 30470013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid crystal-based square lens array with tunable focal length.
    Kim J; Kim J; Na JH; Lee B; Lee SD
    Opt Express; 2014 Feb; 22(3):3316-24. PubMed ID: 24663622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths.
    Park CK; Lee SS; Hwang YS
    Opt Express; 2009 Oct; 17(21):19047-54. PubMed ID: 20372640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally tunable-focus lenticular lens using liquid crystal.
    Heo KC; Yu SH; Kwon JH; Gwag JS
    Appl Opt; 2013 Dec; 52(35):8460-4. PubMed ID: 24513888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depth extraction of 3D objects using axially distributed image sensing.
    Hong SP; Shin D; Lee BG; Kim ES
    Opt Express; 2012 Oct; 20(21):23044-52. PubMed ID: 23188268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.