BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 25608076)

  • 1. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope.
    Liu S; Hu R; Li Q; Zhou P; Dong Z; Kang R
    Appl Opt; 2014 Dec; 53(35):8318-25. PubMed ID: 25608076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope.
    Hu R; Liu S; Li Q
    Appl Opt; 2017 May; 56(15):4551-4560. PubMed ID: 29047887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of lightweight structure and supporting bipod flexure for a space mirror.
    Chen YC; Huang BK; You ZT; Chan CY; Huang TM
    Appl Opt; 2016 Dec; 55(36):10382-10391. PubMed ID: 28059268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope.
    Li Z; Chen X; Wang S; Jin G
    Rev Sci Instrum; 2017 Dec; 88(12):125107. PubMed ID: 29289167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization Design of Large-Aperture Primary Mirror for a Space Remote Camera.
    Liu X; Gu K; Li M; Cheng Z
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application of a Topology Optimization Algorithm Based on the Kriging Surrogate Model in the Mirror Design and Optimization of an Aerial Camera.
    Zhao Y; Li L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and optimization for main support structure of a large-area off-axis three-mirror space camera.
    Wei L; Zhang L; Gong X; Ma DM
    Appl Opt; 2017 Feb; 56(4):1094-1100. PubMed ID: 28158118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization design of an ultralight large-aperture space mirror.
    Wang H; Guo J; Shao M; Sun J; Tian F; Yang X
    Appl Opt; 2021 Dec; 60(35):10878-10884. PubMed ID: 35200862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress mirror polishing for future large lightweight mirrors: design using shape optimization.
    Lemared S; Ferrari M; Du Jeu C; Dufour T; Soulier N; Hugot E
    Opt Express; 2020 Apr; 28(9):14055-14071. PubMed ID: 32403868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization design for edge-lateral support of a medium-aperture lightweight primary mirror.
    Sun Q; Gong X
    Appl Opt; 2020 Nov; 59(33):10498-10505. PubMed ID: 33361984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformable primary mirror for a space telescope.
    Hansen JG; Richard RM; Shannon RR
    Appl Opt; 1982 Jul; 21(14):2620-30. PubMed ID: 20396083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications.
    Sha L; Lin A; Zhao X; Kuang S
    Sci Prog; 2020; 103(3):36850420936482. PubMed ID: 32609583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recommended conceptual optical system design for China's Large Optical-infrared Telescope (LOT).
    Ma D
    Opt Express; 2018 Jan; 26(1):108-119. PubMed ID: 29328282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 1.8-m lightweight Doubly Asymmetric Equatorial Telescope Design.
    Meinel AB
    Appl Opt; 1971 Feb; 10(2):249. PubMed ID: 20094434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equivalent thin-plate method for stressed mirror polishing of an off-axis aspheric silicon carbide lightweight mirror.
    Yi L; Zhang X; Hu H; Zhang Z; Zeng X; Luo X; Xue D; Zhang G
    Opt Express; 2020 Nov; 28(24):36413-36431. PubMed ID: 33379735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and optimization of the tripod flexure for a 2m lightweight mirror for space application.
    Jiang P; Xue C; Wang K; Wang X; Zhou P
    Appl Opt; 2023 Jan; 62(1):217-226. PubMed ID: 36606868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the degradation of lightweight mirror surface accuracy.
    Zhou P; Wang K; Yan C; Zhang X
    Appl Opt; 2018 Sep; 57(27):7758-7763. PubMed ID: 30462038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing.
    Fu Q; Yan L; Tan S; Liu Y; Wang L
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal design and analysis of a space lightweight mirror with a directionally oriented 2.5D-CVT structure.
    Zhang C; Li Z; Tao S; Li Q; Zhao Y; Ren S; Li Y; Ma B; Yu M
    Appl Opt; 2024 Jun; 63(16):4386-4395. PubMed ID: 38856618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and optimization of integrated flexure mounts for unloading lateral gravity of a lightweight mirror for space application.
    Zhang L; Wang T; Zhang F; Zhao H; Zhao Y; Zheng X
    Appl Opt; 2021 Jan; 60(2):417-426. PubMed ID: 33448967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.