These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 25608517)
1. Dipteran wing motor-inspired flapping flight versatility and effectiveness enhancement. Harne RL; Wang KW J R Soc Interface; 2015 Mar; 12(104):20141367. PubMed ID: 25608517 [TBL] [Abstract][Full Text] [Related]
2. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight. Phan HV; Truong QT; Park HC Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465 [TBL] [Abstract][Full Text] [Related]
3. Development and flight performance of a biologically-inspired tailless flapping-wing micro air vehicle with wing stroke plane modulation. Nguyen QV; Chan WL Bioinspir Biomim; 2018 Dec; 14(1):016015. PubMed ID: 30523879 [TBL] [Abstract][Full Text] [Related]
4. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight. Percin M; van Oudheusden BW; de Croon GC; Remes B Bioinspir Biomim; 2016 May; 11(3):036014. PubMed ID: 27194392 [TBL] [Abstract][Full Text] [Related]
5. Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing. Bluman J; Kang CK Bioinspir Biomim; 2017 Jun; 12(4):046004. PubMed ID: 28463224 [TBL] [Abstract][Full Text] [Related]
6. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
7. Experimental study on thrust and power of flapping-wing system based on rack-pinion mechanism. Nguyen TA; Vu Phan H; Au TK; Park HC Bioinspir Biomim; 2016 Jun; 11(4):046001. PubMed ID: 27321705 [TBL] [Abstract][Full Text] [Related]
9. Special section on biomimetics of movement. Carpi F; Erb R; Jeronimidis G Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305 [TBL] [Abstract][Full Text] [Related]
10. Optimal pitching axis location of flapping wings for efficient hovering flight. Wang Q; Goosen JFL; van Keulen F Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144 [TBL] [Abstract][Full Text] [Related]
11. Optimal flapping wing for maximum vertical aerodynamic force in hover: twisted or flat? Phan HV; Truong QT; Au TK; Park HC Bioinspir Biomim; 2016 Jul; 11(4):046007. PubMed ID: 27387833 [TBL] [Abstract][Full Text] [Related]
12. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight. Van Truong T; Le TQ; Park HC; Byun D Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472 [TBL] [Abstract][Full Text] [Related]
13. Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Park H; Choi H Bioinspir Biomim; 2012 Mar; 7(1):016008. PubMed ID: 22278952 [TBL] [Abstract][Full Text] [Related]
14. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
15. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
16. Folding in and out: passive morphing in flapping wings. Stowers AK; Lentink D Bioinspir Biomim; 2015 Mar; 10(2):025001. PubMed ID: 25807583 [TBL] [Abstract][Full Text] [Related]
17. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
18. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight. Sridhar M; Kang CK Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079 [TBL] [Abstract][Full Text] [Related]
19. Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies. Slegers N; Heilman M; Cranford J; Lang A; Yoder J; Habegger ML Bioinspir Biomim; 2017 Jan; 12(1):016013. PubMed ID: 28000615 [TBL] [Abstract][Full Text] [Related]
20. Wing flexibility reduces the energetic requirements of insect flight. Reid HE; Schwab RK; Maxcer M; Peterson RKD; Johnson EL; Jankauski M Bioinspir Biomim; 2019 Jul; 14(5):056007. PubMed ID: 31252414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]