These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 25608664)

  • 1. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems.
    Liu J; Fang X; Deng Q; Han T; Huang W; Li Y
    Sci Rep; 2015 Jan; 5():7952. PubMed ID: 25608664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems.
    Sayer EJ
    Biol Rev Camb Philos Soc; 2006 Feb; 81(1):1-31. PubMed ID: 16460580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of elevated atmospheric CO
    Luo X; Hou E; Zang X; Zhang L; Yi Y; Wen D
    Sci Total Environ; 2019 Jun; 671():157-164. PubMed ID: 30928745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation.
    Wood TE; Lawrence D; Clark DA; Chazdon RL
    Ecology; 2009 Jan; 90(1):109-21. PubMed ID: 19294918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities.
    Liu L; King JS; Giardina CP
    Tree Physiol; 2005 Dec; 25(12):1511-22. PubMed ID: 16137937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of changes in seasonal snow-cover on litter decomposition and soil nitrogen dynamics in forests.].
    Wu QQ; Wang CK
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2422-2432. PubMed ID: 30039682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen and phosphorus addition exerted different influences on litter and soil carbon release in a tropical forest.
    Zhang J; Zhou J; Lambers H; Li Y; Li Y; Qin G; Wang M; Wang J; Li Z; Wang F
    Sci Total Environ; 2022 Aug; 832():155049. PubMed ID: 35390393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla.
    Cha S; Chae HM; Lee SH; Shim JK
    PLoS One; 2017; 12(2):e0171197. PubMed ID: 28182638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.
    Kotowska MM; Leuschner C; Triadiati T; Hertel D
    Oecologia; 2016 Feb; 180(2):601-18. PubMed ID: 26546083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach.
    Uriarte M; Turner BL; Thompson J; Zimmerman JK
    Ecol Appl; 2015 Oct; 25(7):2022-34. PubMed ID: 26591466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Forest litter decomposition and its responses to global climate change].
    Yang WQ; Deng RJ; Zhang J
    Ying Yong Sheng Tai Xue Bao; 2007 Dec; 18(12):2889-95. PubMed ID: 18333472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition.
    He P; Wan SZ; Fang XM; Wang FC; Chen FS
    Sci Rep; 2016 Mar; 6():23717. PubMed ID: 27020048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing.
    Biasi C; Graça MAS; Santos S; Ferreira V
    Oecologia; 2017 Jun; 184(2):555-568. PubMed ID: 28421326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.
    Gautam MK; Lee KS; Song BY; Lee D; Bong YS
    J Plant Res; 2016 May; 129(3):463-76. PubMed ID: 26915037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of nitrogen addition and litter manipulation on nutrient resorption of Leymus chinensis in a semi-arid grassland of northern China.
    Li X; Liu J; Fan J; Ma Y; Ding S; Zhong Z; Wang D
    Plant Biol (Stuttg); 2015 Jan; 17(1):9-15. PubMed ID: 24666511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of forest ecosystems to increasing N deposition in China: A critical review.
    Tian D; Du E; Jiang L; Ma S; Zeng W; Zou A; Feng C; Xu L; Xing A; Wang W; Zheng C; Ji C; Shen H; Fang J
    Environ Pollut; 2018 Dec; 243(Pt A):75-86. PubMed ID: 30172126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil and biomass carbon pools in model communities of tropical plants under elevated CO
    Arnone JA; Körner C
    Oecologia; 1995 Sep; 104(1):61-71. PubMed ID: 28306914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient regulation of organic matter decomposition in a tropical rain forest.
    Cleveland CC; Reed SC; Townsend AR
    Ecology; 2006 Feb; 87(2):492-503. PubMed ID: 16637373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodiversity mediates the effects of stressors but not nutrients on litter decomposition.
    Beaumelle L; De Laender F; Eisenhauer N
    Elife; 2020 Jun; 9():. PubMed ID: 32589139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Herbivore-mediated material fluxes in a northern deciduous forest under elevated carbon dioxide and ozone concentrations.
    Meehan TD; Couture JJ; Bennett AE; Lindroth RL
    New Phytol; 2014 Oct; 204(2):397-407. PubMed ID: 25078062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.