These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 25608859)

  • 1. Current situation on the availability of nanostructure-biological activity data.
    Oksel C; Ma CY; Wang XZ
    SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano(Q)SAR: Challenges, pitfalls and perspectives.
    Tantra R; Oksel C; Puzyn T; Wang J; Robinson KN; Wang XZ; Ma CY; Wilkins T
    Nanotoxicology; 2015; 9(5):636-42. PubMed ID: 25211549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials.
    Buglak AA; Zherdev AV; Dzantiev BB
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Literature Review of (Q)SAR Modelling of Nanomaterial Toxicity.
    Oksel C; Ma CY; Liu JJ; Wilkins T; Wang XZ
    Adv Exp Med Biol; 2017; 947():103-142. PubMed ID: 28168667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology.
    Puzyn T; Jeliazkova N; Sarimveis H; Marchese Robinson RL; Lobaskin V; Rallo R; Richarz AN; Gajewicz A; Papadopulos MG; Hastings J; Cronin MTD; Benfenati E; Fernández A
    Food Chem Toxicol; 2018 Feb; 112():478-494. PubMed ID: 28943385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Recent Advances towards the Development of (Quantitative) Structure-Activity Relationships for Metallic Nanomaterials.
    Chen G; Vijver MG; Xiao Y; Peijnenburg WJGM
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.
    Oksel C; Winkler DA; Ma CY; Wilkins T; Wang XZ
    Nanotoxicology; 2016 Sep; 10(7):1001-12. PubMed ID: 26956430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across.
    Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T
    Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Nano-Specific In Silico NAMs: How to Adjust Nano-QSAR to the Recent Advancements of Nanotoxicology?
    Ciura K; Moschini E; Stępnik M; Serchi T; Gutleb A; Jarzyńska K; Jagiello K; Puzyn T
    Small; 2024 Feb; 20(6):e2305581. PubMed ID: 37775952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risk assessment of engineered nanomaterials: a review of available data and approaches from a regulatory perspective.
    Hristozov DR; Gottardo S; Critto A; Marcomini A
    Nanotoxicology; 2012 Dec; 6():880-98. PubMed ID: 22229953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the biological oxidative damage of engineered nanomaterials.
    Hsieh SF; Bello D; Schmidt DF; Pal AK; Stella A; Isaacs JA; Rogers EJ
    Small; 2013 May; 9(9-10):1853-65. PubMed ID: 23423873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants.
    Musee N; Thwala M; Nota N
    J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials.
    Winkler DA
    Toxicol Appl Pharmacol; 2016 May; 299():96-100. PubMed ID: 26723909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Health implications of engineered nanomaterials.
    Pietroiusti A
    Nanoscale; 2012 Feb; 4(4):1231-47. PubMed ID: 22278373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The neurotoxicity induced by engineered nanomaterials.
    Ge D; Du Q; Ran B; Liu X; Wang X; Ma X; Cheng F; Sun B
    Int J Nanomedicine; 2019; 14():4167-4186. PubMed ID: 31239675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ToxML, a data exchange standard with content controlled vocabulary used to build better (Q)SAR models.
    Ali M; Patel M; Wilkinson D; Judson P; Cross K; Bower D
    SAR QSAR Environ Res; 2013; 24(6):429-38. PubMed ID: 23621552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.