These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 25608932)
1. Potential for nutrient recovery and biogas production from blackwater, food waste and greywater in urban source control systems. Kjerstadius H; Haghighatafshar S; Davidsson Å Environ Technol; 2015; 36(13-16):1707-20. PubMed ID: 25608932 [TBL] [Abstract][Full Text] [Related]
2. Carbon footprint of urban source separation for nutrient recovery. Kjerstadius H; Bernstad Saraiva A; Spångberg J; Davidsson Å J Environ Manage; 2017 Jul; 197():250-257. PubMed ID: 28391098 [TBL] [Abstract][Full Text] [Related]
3. Source separation and anaerobic co-digestion of blackwater and food waste for biogas production and nutrient recovery. Kamravamanesh D; Kokko M Water Sci Technol; 2024 Aug; 90(3):1082-1098. PubMed ID: 39141053 [TBL] [Abstract][Full Text] [Related]
4. The use of food waste as a carbon source for on-site treatment of nutrient-rich blackwater from an office block. Tannock SJ; Clarke WP Environ Technol; 2016 Sep; 37(18):2368-78. PubMed ID: 26853844 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
6. The implications of household greywater treatment and reuse for municipal wastewater flows and micropollutant loads. Revitt DM; Eriksson E; Donner E Water Res; 2011 Feb; 45(4):1549-60. PubMed ID: 21167548 [TBL] [Abstract][Full Text] [Related]
7. Life cycle assessment as development and decision support tool for wastewater resource recovery technology. Fang LL; Valverde-Pérez B; Damgaard A; Plósz BG; Rygaard M Water Res; 2016 Jan; 88():538-549. PubMed ID: 26540509 [TBL] [Abstract][Full Text] [Related]
8. A dual purpose packed-bed reactor for biogas scrubbing and methane-dependent water quality improvement applying to a wastewater treatment system consisting of UASB reactor and trickling filter. Tanaka Y Bioresour Technol; 2002 Aug; 84(1):21-8. PubMed ID: 12137264 [TBL] [Abstract][Full Text] [Related]
9. Environmental assessment of on-site source-separated wastewater treatment and reuse systems for resource recovery in a sustainable sanitation view. de Simone Souza HH; de Morais Lima P; Medeiros DL; Vieira J; Filho FJCM; Paulo PL; Fullana-I-Palmer P; Boncz MÁ Sci Total Environ; 2023 Oct; 895():165122. PubMed ID: 37364844 [TBL] [Abstract][Full Text] [Related]
10. A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology. Moñino P; Aguado D; Barat R; Jiménez E; Giménez JB; Seco A; Ferrer J Waste Manag; 2017 Apr; 62():274-289. PubMed ID: 28237363 [TBL] [Abstract][Full Text] [Related]
11. Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste? Collivignarelli MC; Abbà A; Bertanza G Environ Technol; 2015; 36(13-16):2115-24. PubMed ID: 25704477 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water). Zeeman G; Kujawa K; de Mes T; Hernandez L; de Graaff M; Abu-Ghunmi L; Mels A; Meulman B; Temmink H; Buisman C; van Lier J; Lettinga G Water Sci Technol; 2008; 57(8):1207-12. PubMed ID: 18469391 [TBL] [Abstract][Full Text] [Related]
13. Performance of anaerobic treatment of blackwater collected from different toilet flushing systems: Can we achieve both energy recovery and water conservation? Gao M; Zhang L; Florentino AP; Liu Y J Hazard Mater; 2019 Mar; 365():44-52. PubMed ID: 30408686 [TBL] [Abstract][Full Text] [Related]
14. Comparison of environmental effects and resource consumption for different wastewater and organic waste management systems in a new city area in Sweden. Hellström D; Baky A; Jeppsson U; Jönsson H; Kärrman E Water Environ Res; 2008 Aug; 80(8):708-18. PubMed ID: 18751535 [TBL] [Abstract][Full Text] [Related]
15. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management. Bratina B; Šorgo A; Kramberger J; Ajdnik U; Zemljič LF; Ekart J; Šafarič R J Environ Manage; 2016 Dec; 183(Pt 3):1009-1025. PubMed ID: 27692514 [TBL] [Abstract][Full Text] [Related]
16. Resources and nutrients oriented greywater treatment for non-potable reuses. Li F; Behrendt J; Wichmann K; Otterpohl R Water Sci Technol; 2008; 57(12):1901-7. PubMed ID: 18587176 [TBL] [Abstract][Full Text] [Related]
17. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management. Ishii SK; Boyer TH Water Res; 2015 Aug; 79():88-103. PubMed ID: 25973581 [TBL] [Abstract][Full Text] [Related]
18. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. Śniatała B; Al-Hazmi HE; Sobotka D; Zhai J; Mąkinia J Sci Total Environ; 2024 Aug; 937():173446. PubMed ID: 38788940 [TBL] [Abstract][Full Text] [Related]
19. Analysis of sludge management parameters resulting from the use of domestic garbage disposers. Galil NI; Yaacov L Water Sci Technol; 2001; 44(10):27-34. PubMed ID: 11794665 [TBL] [Abstract][Full Text] [Related]
20. Environmental impact of submerged anaerobic MBR (SAnMBR) technology used to treat urban wastewater at different temperatures. Pretel R; Robles A; Ruano MV; Seco A; Ferrer J Bioresour Technol; 2013 Dec; 149():532-40. PubMed ID: 24119499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]