These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25609041)

  • 1. Stand-alone and hybrid positioning using asynchronous pseudolites.
    Gioia C; Borio D
    Sensors (Basel); 2014 Dec; 15(1):166-93. PubMed ID: 25609041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precise Point Positioning Algorithm for Pseudolite Combined with GNSS in a Constrained Observation Environment.
    Sheng C; Gan X; Yu B; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pseudolite-based positioning system for legacy GNSS receivers.
    Kim C; So H; Lee T; Kee C
    Sensors (Basel); 2014 Mar; 14(4):6104-23. PubMed ID: 24681674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne relay-based regional positioning system.
    Lee K; Noh H; Lim J
    Sensors (Basel); 2015 May; 15(6):12682-99. PubMed ID: 26029953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments.
    Zhu R; Wang Y; Cao H; Yu B; Gan X; Huang L; Zhang H; Li S; Jia H; Chen J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Epoch, Single-Frequency Multi-GNSS L5 RTK under High-Elevation Masking.
    Wang K; Chen P; Teunissen PJG
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30832343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite.
    Huang L; Gan X; Yu B; Zhang H; Li S; Cheng J; Liang X; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An SVM Based Weight Scheme for Improving Kinematic GNSS Positioning Accuracy with Low-Cost GNSS Receiver in Urban Environments.
    Lyu Z; Gao Y
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios.
    Falco G; Pini M; Marucco G
    Sensors (Basel); 2017 Jan; 17(2):. PubMed ID: 28146058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System.
    Gan X; Yu B; Huang L; Jia R; Zhang H; Sheng C; Fan G; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart Device-Supported BDS/GNSS Real-Time Kinematic Positioning for Sub-Meter-Level Accuracy in Urban Location-Based Services.
    Wang L; Li Z; Zhao J; Zhou K; Wang Z; Yuan H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 28009835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of a vector-based tracking loop receiver in a pseudolite navigation system.
    So H; Lee T; Jeon S; Kim C; Kee C; Kim T; Lee S
    Sensors (Basel); 2010; 10(7):6324-46. PubMed ID: 22163552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation and Performance of a Deeply-Coupled GNSS Receiver with Low-Cost MEMS Inertial Sensors for Vehicle Urban Navigation.
    Feng X; Zhang T; Lin T; Tang H; Niu X
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32560192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methodology for Simulating 5G and GNSS High-Accuracy Positioning.
    Del Peral-Rosado JA; Saloranta J; Destino G; López-Salcedo JA; Seco-Granados G
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Empirical Study on V2X Enhanced Low-Cost GNSS Cooperative Positioning in Urban Environments.
    Schwarzbach P; Michler A; Tauscher P; Michler O
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31783645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.
    Zimbelman EG; Keefe RF
    PLoS One; 2018; 13(1):e0191017. PubMed ID: 29324794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Loosely Coupled 3DMA GNSS/Doppler Measurements Integration Using a Graph Optimization and Its Performance Assessments in Urban Canyons of New York.
    Ng HF; Hsu LT; Lee MJL; Feng J; Naeimi T; Beheshti M; Rizzo JR
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Definition of an Enhanced Map-Matching Algorithm for Urban Environments with Poor GNSS Signal Quality.
    Jiménez F; Monzón S; Naranjo JE
    Sensors (Basel); 2016 Feb; 16(2):193. PubMed ID: 26861320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Performance Analysis of Signal Acquisition and Doppler Tracking in LEO Augmented GNSS Receiver.
    Cheng L; Dai Y; Guo W; Zheng J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.