These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25609113)

  • 1. The effect of convection on infrared detection by antennal warm cells in the bloodsucking bug Rhodnius prolixus.
    Tichy H; Zopf LM
    J Neurophysiol; 2015 Apr; 113(7):2250-61. PubMed ID: 25609113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of ambient temperature on warm cell responses to infrared radiation in the bloodsucking bug Rhodnius prolixus.
    Zopf LM; Lazzari CR; Tichy H
    J Neurophysiol; 2014 Mar; 111(6):1341-9. PubMed ID: 24381031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared detection without specialized infrared receptors in the bloodsucking bug Rhodnius prolixus.
    Zopf LM; Lazzari CR; Tichy H
    J Neurophysiol; 2014 Oct; 112(7):1606-15. PubMed ID: 24944223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared sensitivity of thermoreceptors.
    Gingl E; Tichy H
    J Comp Physiol A; 2001 Jul; 187(6):467-75. PubMed ID: 11548993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermosensation and the TRPV channel in Rhodnius prolixus.
    Zermoglio PF; Latorre-Estivalis JM; Crespo JE; Lorenzo MG; Lazzari CR
    J Insect Physiol; 2015 Oct; 81():145-56. PubMed ID: 26225467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative dissection of the peripheral olfactory system of the Chagas disease vectors Rhodnius prolixus and Rhodnius brethesi.
    Campetella F; Ignell R; Beutel R; Hansson BS; Sachse S
    PLoS Negl Trop Dis; 2021 Apr; 15(4):e0009098. PubMed ID: 33857145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response to heat in Rhodnius prolixus: the role of the thermal background.
    Fresquet N; Lazzari CR
    J Insect Physiol; 2011 Oct; 57(10):1446-9. PubMed ID: 21806990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hunger is the best spice: effects of starvation in the antennal responses of the blood-sucking bug Rhodnius prolixus.
    Reisenman CE
    J Insect Physiol; 2014 Dec; 71():8-13. PubMed ID: 25280630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of Rhodnius prolixus (Hemiptera; Reduviidae) to approach a thermal source solely by its infrared radiation.
    Schmitz H; Trenner S; Hofmann MH; Bleckmann H
    J Insect Physiol; 2000 May; 46(5):745-751. PubMed ID: 10742523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold-receptor cells supply both cold- and warm-responsive projection neurons in the antennal lobe of the cockroach.
    Fischer H; Tichy H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Sep; 188(8):643-8. PubMed ID: 12355240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of a μ-biomimetic uncooled IR-Sensor inspired by the infrared receptors of Melanophila acuminata.
    Siebke G; Holik P; Schmitz S; Tätzner S; Thiesler J; Steltenkamp S
    Bioinspir Biomim; 2015 Mar; 10(2):026007. PubMed ID: 25822807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure and electrophysiology of thermosensitive sensilla coeloconica in a tropical katydid of the genus Mecopoda (Orthoptera, Tettigoniidae).
    Schneider ES; Kleineidam CJ; Leitinger G; Römer H
    Arthropod Struct Dev; 2018 Sep; 47(5):482-497. PubMed ID: 30120986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warm-sensitive afferent splanchnic C-fiber units in vitro.
    Adelson DW; Wei JY; Kruger L
    J Neurophysiol; 1997 Jun; 77(6):2989-3002. PubMed ID: 9212251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory representation of temperature in mosquito warm and cold cells.
    Gingl E; Hinterwirth A; Tichy H
    J Neurophysiol; 2005 Jul; 94(1):176-85. PubMed ID: 15673550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain.
    LaMotte RH; Campbell JN
    J Neurophysiol; 1978 Mar; 41(2):509-28. PubMed ID: 418156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of antennae in the thermopreference and biting response of haematophagous bugs.
    Lorenzo Figueiras AN; Flores GB; Lazzari CR
    J Insect Physiol; 2013 Dec; 59(12):1194-8. PubMed ID: 24076106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological infrared imaging and sensing.
    Campbell AL; Naik RR; Sowards L; Stone MO
    Micron; 2002; 33(2):211-25. PubMed ID: 11567889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological variations of warm and cool sense with shift of environmental temperature.
    Hirosawa I; Dodo H; Hosokawa M; Watanabe S; Nishiyama K; Fukuchi Y
    Int J Neurosci; 1984 Nov; 24(3-4):281-8. PubMed ID: 6511215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do haematophagous bugs assess skin surface temperature to detect blood vessels?
    Ferreira RA; Lazzari CR; Lorenzo MG; Pereira MH
    PLoS One; 2007 Sep; 2(9):e932. PubMed ID: 17895973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioural responses to human skin extracts and antennal phenotypes of sylvatic first filial generation and long rearing laboratory colony Rhodnius prolixus.
    Ortiz MI; Suárez-Rivillas A; Molina J
    Mem Inst Oswaldo Cruz; 2011 Jun; 106(4):461-6. PubMed ID: 21739035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.