These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 2560930)

  • 1. A rapid visual method for the identification of 4- or 6-base restriction endonuclease sites.
    Hodgson CP
    Biotechniques; 1989 Feb; 7(2):148-9. PubMed ID: 2560930
    [No Abstract]   [Full Text] [Related]  

  • 2. Restriction endonuclease cleavage at the termini of PCR products.
    Kaufman DL; Evans GA
    Biotechniques; 1990 Sep; 9(3):304, 306. PubMed ID: 2171587
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of preferred distamycin-DNA binding sites by the combinatorial method REPSA.
    Hardenbol P; Wang JC; Van Dyke MW
    Bioconjug Chem; 1997; 8(5):617-20. PubMed ID: 9327123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for the sequence-dependent DNA binding of 4',6-diamidino-2-phenylindole (DAPI).
    Parolin C; Zanotti G; Palù G
    Biochem Biophys Res Commun; 1995 Mar; 208(1):332-8. PubMed ID: 7887947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial determination of sequence specificity for nanomolar DNA-binding hairpin polyamides.
    Vashisht Gopal YN; Van Dyke MW
    Biochemistry; 2003 Jun; 42(22):6891-903. PubMed ID: 12779344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two subunits of EcoRII restriction endonuclease interact with two DNA recognition sites.
    Petrauskene OV; Karpova EA; Gromova ES; Guschlbauer W
    Biochem Biophys Res Commun; 1994 Feb; 198(3):885-90. PubMed ID: 8117292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining restriction digest efficiency using the SNaPshot single-base extension method and CE.
    Ballantyne KN; van Oorschot RA; Kayser M; Mitchell RJ
    Electrophoresis; 2007 May; 28(10):1514-7. PubMed ID: 17447234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protecting recognition sequences on DNA by a cleavage-deficient restriction endonuclease.
    Xu SY; Schildkraut I
    Biotechniques; 1993 Aug; 15(2):310-5. PubMed ID: 8396948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid method for confirming cell line identity: DNA "fingerprinting" with a minisatellite probe from M13 bacteriophage.
    Devor EJ; Ivanovich AK; Hickok JM; Todd RD
    Biotechniques; 1988 Mar; 6(3):200, 202. PubMed ID: 2856160
    [No Abstract]   [Full Text] [Related]  

  • 10. GMAP: a multi-purpose computer program to aid synthetic gene design, cassette mutagenesis and the introduction of potential restriction sites into DNA sequences.
    Raghava GP; Sahni G
    Biotechniques; 1994 Jun; 16(6):1116-23. PubMed ID: 8074878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrical probe of protein-DNA interactions on DNA-modified surfaces.
    Boon EM; Salas JE; Barton JK
    Nat Biotechnol; 2002 Mar; 20(3):282-6. PubMed ID: 11875430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Interaction of restriction and modification enzyme EcoRII with synthetic DNA fragments. VII. The study of complex-formation of endonuclease EcoRII with substrates containing natural and modified recognition sites].
    Vinogradova MN; Gromova ES; Purmal' AA; Kosykh VG; Shabarova ZA
    Mol Biol (Mosk); 1986; 20(5):1329-36. PubMed ID: 3022126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protocol for DNA fragment extraction from polyacrylamide gels.
    Dybczynski I; Plucienniczak A
    Biotechniques; 1988; 6(10):924-6. PubMed ID: 2856197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of additional host restriction-modification systems in the unicellular cyanobacterium Cyanothece sp.
    Soper BW; Hollister WR; Reddy KJ
    Biochem Biophys Res Commun; 1996 Jun; 223(1):24-30. PubMed ID: 8660373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MacVector: restriction enzyme analysis.
    Olson SA
    Methods Mol Biol; 1994; 25():227-36. PubMed ID: 8004168
    [No Abstract]   [Full Text] [Related]  

  • 16. In vitro selection of restriction endonucleases by in vitro compartmentalization.
    Doi N; Kumadaki S; Oishi Y; Matsumura N; Yanagawa H
    Nucleic Acids Res; 2004 Jul; 32(12):e95. PubMed ID: 15247328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide-nucleic acid interactions: possible recognition determinants of Eco RI endonuclease.
    Poulsen M; Johnson PH; Loew G
    Prog Clin Biol Res; 1985; 172B():77-90. PubMed ID: 2986169
    [No Abstract]   [Full Text] [Related]  

  • 18. Biochemical and mutational analysis of EcoRII functional domains reveals evolutionary links between restriction enzymes.
    Tamulaitis G; Mucke M; Siksnys V
    FEBS Lett; 2006 Mar; 580(6):1665-71. PubMed ID: 16497303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the structure and operation of type I DNA restriction enzymes.
    Davies GP; Martin I; Sturrock SS; Cronshaw A; Murray NE; Dryden DT
    J Mol Biol; 1999 Jul; 290(2):565-79. PubMed ID: 10390354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monomeric restriction endonuclease BcnI in the apo form and in an asymmetric complex with target DNA.
    Sokolowska M; Kaus-Drobek M; Czapinska H; Tamulaitis G; Szczepanowski RH; Urbanke C; Siksnys V; Bochtler M
    J Mol Biol; 2007 Jun; 369(3):722-34. PubMed ID: 17445830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.