BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 25609641)

  • 1. Chronic oligodendrogenesis and remyelination after spinal cord injury in mice and rats.
    Hesp ZC; Goldstein EZ; Miranda CJ; Kaspar BK; McTigue DM
    J Neurosci; 2015 Jan; 35(3):1274-90. PubMed ID: 25609641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TLR4 Deficiency Impairs Oligodendrocyte Formation in the Injured Spinal Cord.
    Church JS; Kigerl KA; Lerch JK; Popovich PG; McTigue DM
    J Neurosci; 2016 Jun; 36(23):6352-64. PubMed ID: 27277810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prominent oligodendrocyte genesis along the border of spinal contusion lesions.
    Tripathi R; McTigue DM
    Glia; 2007 May; 55(7):698-711. PubMed ID: 17330874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury.
    Cao Q; He Q; Wang Y; Cheng X; Howard RM; Zhang Y; DeVries WH; Shields CB; Magnuson DS; Xu XM; Kim DH; Whittemore SR
    J Neurosci; 2010 Feb; 30(8):2989-3001. PubMed ID: 20181596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic demyelination and myelin repair after spinal cord injury in mice: A potential link for glutamatergic axon activity.
    Pukos N; Marion CM; Arnold WD; Noble BT; Popovich PG; McTigue DM
    Glia; 2023 Sep; 71(9):2096-2116. PubMed ID: 37208933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury.
    Shultz RB; Wang Z; Nong J; Zhang Z; Zhong Y
    J Neural Eng; 2017 Jun; 14(3):036014. PubMed ID: 28358726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.
    Assinck P; Duncan GJ; Plemel JR; Lee MJ; Stratton JA; Manesh SB; Liu J; Ramer LM; Kang SH; Bergles DE; Biernaskie J; Tetzlaff W
    J Neurosci; 2017 Sep; 37(36):8635-8654. PubMed ID: 28760862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury.
    Karimi-Abdolrezaee S; Eftekharpour E; Wang J; Morshead CM; Fehlings MG
    J Neurosci; 2006 Mar; 26(13):3377-89. PubMed ID: 16571744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GGF2 (Nrg1-β3) treatment enhances NG2+ cell response and improves functional recovery after spinal cord injury.
    Whittaker MT; Zai LJ; Lee HJ; Pajoohesh-Ganji A; Wu J; Sharp A; Wyse R; Wrathall JR
    Glia; 2012 Feb; 60(2):281-94. PubMed ID: 22042562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myelin status and oligodendrocyte lineage cells over time after spinal cord injury: What do we know and what still needs to be unwrapped?
    Pukos N; Goodus MT; Sahinkaya FR; McTigue DM
    Glia; 2019 Nov; 67(11):2178-2202. PubMed ID: 31444938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platelet-derived growth factor-responsive neural precursors give rise to myelinating oligodendrocytes after transplantation into the spinal cords of contused rats and dysmyelinated mice.
    Plemel JR; Chojnacki A; Sparling JS; Liu J; Plunet W; Duncan GJ; Park SE; Weiss S; Tetzlaff W
    Glia; 2011 Dec; 59(12):1891-910. PubMed ID: 22407783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From demyelination to remyelination: the road toward therapies for spinal cord injury.
    Papastefanaki F; Matsas R
    Glia; 2015 Jul; 63(7):1101-25. PubMed ID: 25731941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury.
    Bartus K; Galino J; James ND; Hernandez-Miranda LR; Dawes JM; Fricker FR; Garratt AN; McMahon SB; Ramer MS; Birchmeier C; Bennett DL; Bradbury EJ
    Brain; 2016 May; 139(Pt 5):1394-416. PubMed ID: 26993800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential and cooperative actions of Olig1 and Olig2 transcription factors on immature proliferating cells after contusive spinal cord injury.
    Kim HM; Hwang DH; Choi JY; Park CH; Suh-Kim H; Kim SU; Kim BG
    Glia; 2011 Jul; 59(7):1094-106. PubMed ID: 21538562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and therapeutic evaluation of a Nestin⁺ CNP⁺ NG2⁺ cell population on mouse spinal cord injury.
    Liu R; Zhang S; Yang H; Ju P; Xia Y; Shi Y; Lim TH; Lim AS; Liang F; Feng Z
    Exp Neurol; 2015 Jul; 269():28-42. PubMed ID: 25862288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte fate after spinal cord injury.
    Almad A; Sahinkaya FR; McTigue DM
    Neurotherapeutics; 2011 Apr; 8(2):262-73. PubMed ID: 21404073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remyelination reporter reveals prolonged refinement of spontaneously regenerated myelin.
    Powers BE; Sellers DL; Lovelett EA; Cheung W; Aalami SP; Zapertov N; Maris DO; Horner PJ
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):4075-80. PubMed ID: 23431182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.