These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3112 related articles for article (PubMed ID: 25609793)

  • 1. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
    Li D; Liu CM; Luo R; Sadakane K; Lam TW
    Bioinformatics; 2015 May; 31(10):1674-6. PubMed ID: 25609793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices.
    Li D; Luo R; Liu CM; Leung CM; Ting HF; Sadakane K; Yamashita H; Lam TW
    Methods; 2016 Jun; 102():3-11. PubMed ID: 27012178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MegaGTA: a sensitive and accurate metagenomic gene-targeted assembler using iterative de Bruijn graphs.
    Li D; Huang Y; Leung CM; Luo R; Ting HF; Lam TW
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):408. PubMed ID: 29072142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical evaluation of 11 de novo assemblers in metagenome assembly.
    Forouzan E; Shariati P; Mousavi Maleki MS; Karkhane AA; Yakhchali B
    J Microbiol Methods; 2018 Aug; 151():99-105. PubMed ID: 29953874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ViraPipe: scalable parallel pipeline for viral metagenome analysis from next generation sequencing reads.
    Maarala AI; Bzhalava Z; Dillner J; Heljanko K; Bzhalava D
    Bioinformatics; 2018 Mar; 34(6):928-935. PubMed ID: 29106455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPA: a short peptide assembler for metagenomic data.
    Yang Y; Yooseph S
    Nucleic Acids Res; 2013 Apr; 41(8):e91. PubMed ID: 23435317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Omega: an overlap-graph de novo assembler for metagenomics.
    Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C
    Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads.
    Namiki T; Hachiya T; Tanaka H; Sakakibara Y
    Nucleic Acids Res; 2012 Nov; 40(20):e155. PubMed ID: 22821567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of de-novo assembly tools for plasmid metagenome analysis.
    Gupta SK; Raza S; Unno T
    Genes Genomics; 2019 Sep; 41(9):1077-1083. PubMed ID: 31187446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of long error-prone reads using de Bruijn graphs.
    Lin Y; Yuan J; Kolmogorov M; Shen MW; Chaisson M; Pevzner PA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):E8396-E8405. PubMed ID: 27956617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline.
    Lin YY; Hsieh CH; Chen JH; Lu X; Kao JH; Chen PJ; Chen DS; Wang HY
    BMC Bioinformatics; 2017 Apr; 18(1):223. PubMed ID: 28446139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.
    Benoit G; Lemaitre C; Lavenier D; Drezen E; Dayris T; Uricaru R; Rizk G
    BMC Bioinformatics; 2015 Sep; 16():288. PubMed ID: 26370285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembling metagenomes, one community at a time.
    van der Walt AJ; van Goethem MW; Ramond JB; Makhalanyane TP; Reva O; Cowan DA
    BMC Genomics; 2017 Jul; 18(1):521. PubMed ID: 28693474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of viral quasispecies with a paired de Bruijn graph.
    Freire B; Ladra S; Paramá JR; Salmela L
    Bioinformatics; 2021 May; 37(4):473-481. PubMed ID: 32926162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid based de Bruijn graph algorithm for identifying complete coding genes from metagenomic and metatranscriptomic short reads.
    Liu J; Lian Q; Chen Y; Qi J
    Nucleic Acids Res; 2019 Mar; 47(5):e30. PubMed ID: 30657979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The present and future of de novo whole-genome assembly.
    Sohn JI; Nam JW
    Brief Bioinform; 2018 Jan; 19(1):23-40. PubMed ID: 27742661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 156.