These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 25610448)
1. Chilling requirement of Ribes cultivars. Jones HG; Gordon SL; Brennan RM Front Plant Sci; 2014; 5():767. PubMed ID: 25610448 [TBL] [Abstract][Full Text] [Related]
2. An approach to the determination of winter chill requirements for different Ribes cultivars. Jones HG; Hillis RM; Gordon SL; Brennan RM Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():18-27. PubMed ID: 22512943 [TBL] [Abstract][Full Text] [Related]
3. Yield potential definition of the chilling requirement reveals likely underestimation of the risk of climate change on winter chill accumulation. Campoy JA; Darbyshire R; Dirlewanger E; Quero-García J; Wenden B Int J Biometeorol; 2019 Feb; 63(2):183-192. PubMed ID: 30460433 [TBL] [Abstract][Full Text] [Related]
4. Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub. Pagter M; Andersen UB; Andersen L AoB Plants; 2015 Mar; 7():. PubMed ID: 25802249 [TBL] [Abstract][Full Text] [Related]
5. Chilling or chemical induction of dormancy release in blackcurrant (Ribes nigrum) buds is associated with characteristic shifts in metabolite profiles. Hancock RD; Schulz E; Verrall SR; Taylor J; Méret M; Brennan RM; Bishop GJ; Else M; Cross JV; Simkin AJ Biochem J; 2024 Aug; 481(16):1057-1073. PubMed ID: 39072687 [TBL] [Abstract][Full Text] [Related]
6. Winter warming stimulates vegetative growth and alters fruit quality of blackcurrant (Ribes nigrum). Pagter M; Kjær KH Int J Biometeorol; 2022 Jul; 66(7):1391-1401. PubMed ID: 35412081 [TBL] [Abstract][Full Text] [Related]
7. Identification of chilling and heat requirements of cherry trees--a statistical approach. Luedeling E; Kunz A; Blanke MM Int J Biometeorol; 2013 Sep; 57(5):679-89. PubMed ID: 23053065 [TBL] [Abstract][Full Text] [Related]
8. Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees. El Yaacoubi A; Malagi G; Oukabli A; Citadin I; Hafidi M; Bonhomme M; Legave JM Int J Biometeorol; 2016 Nov; 60(11):1695-1710. PubMed ID: 27103152 [TBL] [Abstract][Full Text] [Related]
9. Climate change affects winter chill for temperate fruit and nut trees. Luedeling E; Girvetz EH; Semenov MA; Brown PH PLoS One; 2011; 6(5):e20155. PubMed ID: 21629649 [TBL] [Abstract][Full Text] [Related]
10. Comparison of chilling and heat requirements for leaf unfolding in deciduous woody species in temperate and subtropical China. Xu Y; Dai J; Ge Q; Wang H; Tao Z Int J Biometeorol; 2021 Mar; 65(3):393-403. PubMed ID: 32880063 [TBL] [Abstract][Full Text] [Related]
11. A global analysis of the comparability of winter chill models for fruit and nut trees. Luedeling E; Brown PH Int J Biometeorol; 2011 May; 55(3):411-21. PubMed ID: 20730614 [TBL] [Abstract][Full Text] [Related]
12. Molecular responses to chilling in a warming climate and their impacts on plant reproductive development and yield. Penfield S; Warner S; Wilkinson L J Exp Bot; 2021 Aug; ():. PubMed ID: 34409451 [TBL] [Abstract][Full Text] [Related]
13. Potential vulnerability of Moroccan apple orchard to climate change-induced phenological perturbations: effects on yields and fruit quality. El Yaacoubi A; El Jaouhari N; Bourioug M; El Youssfi L; Cherroud S; Bouabid R; Chaoui M; Abouabdillah A Int J Biometeorol; 2020 Mar; 64(3):377-387. PubMed ID: 31773321 [TBL] [Abstract][Full Text] [Related]
14. Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950-2099. Luedeling E; Zhang M; Girvetz EH PLoS One; 2009 Jul; 4(7):e6166. PubMed ID: 19606220 [TBL] [Abstract][Full Text] [Related]
15. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species. Harrington CA; Gould PJ Front Plant Sci; 2015; 6():120. PubMed ID: 25784922 [TBL] [Abstract][Full Text] [Related]
16. Deciphering the genetic mechanisms of chilling requirement for bud endodormancy release in deciduous fruit trees. Zhang W; Liao L; Wan B; Han Y Mol Breed; 2024 Oct; 44(10):70. PubMed ID: 39391168 [TBL] [Abstract][Full Text] [Related]
17. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds. Pope KS; Dose V; Da Silva D; Brown PH; DeJong TM Int J Biometeorol; 2015 Jun; 59(6):707-15. PubMed ID: 25119825 [TBL] [Abstract][Full Text] [Related]
18. Impact of future warming on winter chilling in Australia. Darbyshire R; Webb L; Goodwin I; Barlow EW Int J Biometeorol; 2013 May; 57(3):355-66. PubMed ID: 22674019 [TBL] [Abstract][Full Text] [Related]
19. Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Jiménez S; Reighard GL; Bielenberg DG Plant Mol Biol; 2010 May; 73(1-2):157-67. PubMed ID: 20143130 [TBL] [Abstract][Full Text] [Related]
20. Climate change threatens central Tunisian nut orchards. Benmoussa H; Ben Mimoun M; Ghrab M; Luedeling E Int J Biometeorol; 2018 Dec; 62(12):2245-2255. PubMed ID: 30368676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]