These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25610457)

  • 1. Context transfer in reinforcement learning using action-value functions.
    Mousavi A; Nadjar Araabi B; Nili Ahmadabadi M
    Comput Intell Neurosci; 2014; 2014():428567. PubMed ID: 25610457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of autonomous problem solving process by dynamic construction of task models in multiple tasks environment.
    Ohigashi Y; Omori T
    Neural Netw; 2006 Oct; 19(8):1169-80. PubMed ID: 16989982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic abstract policies: generalizing knowledge to improve reinforcement learning.
    Koga ML; Freire V; Costa AH
    IEEE Trans Cybern; 2015 Jan; 45(1):77-88. PubMed ID: 24835233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reward-predictive representations generalize across tasks in reinforcement learning.
    Lehnert L; Littman ML; Frank MJ
    PLoS Comput Biol; 2020 Oct; 16(10):e1008317. PubMed ID: 33057329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. When, what, and how much to reward in reinforcement learning-based models of cognition.
    Janssen CP; Gray WD
    Cogn Sci; 2012 Mar; 36(2):333-58. PubMed ID: 22257174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incremental state aggregation for value function estimation in reinforcement learning.
    Mori T; Ishii S
    IEEE Trans Syst Man Cybern B Cybern; 2011 Oct; 41(5):1407-16. PubMed ID: 21632307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online learning of shaping rewards in reinforcement learning.
    Grześ M; Kudenko D
    Neural Netw; 2010 May; 23(4):541-50. PubMed ID: 20116208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk-sensitive reinforcement learning.
    Shen Y; Tobia MJ; Sommer T; Obermayer K
    Neural Comput; 2014 Jul; 26(7):1298-328. PubMed ID: 24708369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer of learning in choice reactions: contributions of specific and general components of manual responses.
    Yamaguchi M; Proctor RW
    Acta Psychol (Amst); 2009 Jan; 130(1):1-10. PubMed ID: 18952202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attentional Selection Can Be Predicted by Reinforcement Learning of Task-relevant Stimulus Features Weighted by Value-independent Stickiness.
    Balcarras M; Ardid S; Kaping D; Everling S; Womelsdorf T
    J Cogn Neurosci; 2016 Feb; 28(2):333-49. PubMed ID: 26488586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.
    Lewis FL; Vamvoudakis KG
    IEEE Trans Syst Man Cybern B Cybern; 2011 Feb; 41(1):14-25. PubMed ID: 20350860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking for Bayesian Reinforcement Learning.
    Castronovo M; Ernst D; Couëtoux A; Fonteneau R
    PLoS One; 2016; 11(6):e0157088. PubMed ID: 27304891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain mechanism of reward prediction under predictable and unpredictable environmental dynamics.
    Tanaka SC; Samejima K; Okada G; Ueda K; Okamoto Y; Yamawaki S; Doya K
    Neural Netw; 2006 Oct; 19(8):1233-41. PubMed ID: 16979871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based reinforcement learning for partially observable games with sampling-based state estimation.
    Fujita H; Ishii S
    Neural Comput; 2007 Nov; 19(11):3051-87. PubMed ID: 17883349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospective and retrospective temporal difference learning.
    Dayan P
    Network; 2009; 20(1):32-46. PubMed ID: 19229732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.