These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 25611160)
1. Understanding the binding of inhibitors of matrix metalloproteinases by molecular docking, quantum mechanical calculations, molecular dynamics simulations, and a MMGBSA/MMBappl study. Singh T; Adekoya OA; Jayaram B Mol Biosyst; 2015 Apr; 11(4):1041-51. PubMed ID: 25611160 [TBL] [Abstract][Full Text] [Related]
2. Computational Approaches to Matrix Metalloprotease Drug Design. Singh T; Jayaram B; Adekoya OA Methods Mol Biol; 2017; 1579():273-285. PubMed ID: 28299743 [TBL] [Abstract][Full Text] [Related]
3. Probing the S1' site for the identification of non-zinc-binding MMP-2 inhibitors. Di Pizio A; Laghezza A; Tortorella P; Agamennone M ChemMedChem; 2013 Sep; 8(9):1475-82, 1421. PubMed ID: 23873724 [TBL] [Abstract][Full Text] [Related]
4. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. Hu X; Shelver WH J Mol Graph Model; 2003 Nov; 22(2):115-26. PubMed ID: 12932782 [TBL] [Abstract][Full Text] [Related]
5. Specific interactions between zinc metalloproteinase and its inhibitors: Ab initio fragment molecular orbital calculations. Ara A; Kadoya R; Ishimura H; Shimamura K; Sylte I; Kurita N J Mol Graph Model; 2017 Aug; 75():277-286. PubMed ID: 28618335 [TBL] [Abstract][Full Text] [Related]
6. Potent inhibitors precise to S1' loop of MMP-13, a crucial target for osteoarthritis. Kalva S; Saranyah K; Suganya PR; Nisha M; Saleena LM J Mol Graph Model; 2013 Jul; 44():297-310. PubMed ID: 23938376 [TBL] [Abstract][Full Text] [Related]
7. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes. Jain T; Jayaram B Proteins; 2007 Jun; 67(4):1167-78. PubMed ID: 17380508 [TBL] [Abstract][Full Text] [Related]
8. Arylamino methylene bisphosphonate derivatives as bone seeking matrix metalloproteinase inhibitors. Tauro M; Laghezza A; Loiodice F; Agamennone M; Campestre C; Tortorella P Bioorg Med Chem; 2013 Nov; 21(21):6456-65. PubMed ID: 24071448 [TBL] [Abstract][Full Text] [Related]
9. Computational and In Vitro Investigation of (-)-Epicatechin and Proanthocyanidin B2 as Inhibitors of Human Matrix Metalloproteinase 1. Lee KE; Bharadwaj S; Yadava U; Kang SG Biomolecules; 2020 Sep; 10(10):. PubMed ID: 32998374 [TBL] [Abstract][Full Text] [Related]
10. Combined structure- and ligand-based pharmacophore modeling and molecular dynamics simulation studies to identify selective inhibitors of MMP-8. Kalva S; Vinod D; Saleena LM J Mol Model; 2014 May; 20(5):2191. PubMed ID: 24756550 [TBL] [Abstract][Full Text] [Related]
11. Structure-based molecular insights into matrix metalloproteinase inhibitors in cancer treatments. Lin H; Xu P; Huang M Future Med Chem; 2022 Jan; 14(1):35-51. PubMed ID: 34779649 [TBL] [Abstract][Full Text] [Related]
12. Chemically modified tetracyclines as inhibitors of MMP-2 matrix metalloproteinase: a molecular and structural study. Marcial BL; Sousa SF; Barbosa IL; Dos Santos HF; Ramos MJ J Phys Chem B; 2012 Nov; 116(46):13644-54. PubMed ID: 23121406 [TBL] [Abstract][Full Text] [Related]
13. An integrated computational and experimental approach to gaining selectivity for MMP-2 within the gelatinase subfamily. Fabre B; Filipiak K; Díaz N; Zapico JM; Suárez D; Ramos A; de Pascual-Teresa B Chembiochem; 2014 Feb; 15(3):399-412. PubMed ID: 24449516 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Fischer T; Riedl R Molecules; 2019 Jun; 24(12):. PubMed ID: 31216704 [TBL] [Abstract][Full Text] [Related]
15. An integrated computational approach to rationalize the activity of non-zinc-binding MMP-2 inhibitors. Di Pizio A; Agamennone M; Aschi M PLoS One; 2012; 7(11):e47774. PubMed ID: 23144829 [TBL] [Abstract][Full Text] [Related]
16. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies. Ammazzalorso A; De Filippis B; Campestre C; Laghezza A; Marrone A; Amoroso R; Tortorella P; Agamennone M Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27782083 [TBL] [Abstract][Full Text] [Related]
17. Validating the 1,2-Difluoro Motif As a Hybrid Bioisostere of CF Erdeljac N; Thiehoff C; Jumde RP; Daniliuc CG; Höppner S; Faust A; Hirsch AKH; Gilmour R J Med Chem; 2020 Jun; 63(11):6225-6237. PubMed ID: 32379447 [TBL] [Abstract][Full Text] [Related]
18. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Maskos K; Bode W Mol Biotechnol; 2003 Nov; 25(3):241-66. PubMed ID: 14668538 [TBL] [Abstract][Full Text] [Related]
19. Quantum chemical study on the coordination environment of the catalytic zinc ion in matrix metalloproteinases. Díaz N; Suarez D; Sordo TL J Phys Chem B; 2006 Nov; 110(47):24222-30. PubMed ID: 17125395 [TBL] [Abstract][Full Text] [Related]
20. Unraveling hidden regulatory sites in structurally homologous metalloproteases. Udi Y; Fragai M; Grossman M; Mitternacht S; Arad-Yellin R; Calderone V; Melikian M; Toccafondi M; Berezovsky IN; Luchinat C; Sagi I J Mol Biol; 2013 Jul; 425(13):2330-46. PubMed ID: 23583775 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]