These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 25611326)
1. Hydrogen exchange of disordered proteins in Escherichia coli. Smith AE; Zhou LZ; Pielak GJ Protein Sci; 2015 May; 24(5):706-13. PubMed ID: 25611326 [TBL] [Abstract][Full Text] [Related]
2. A six-dimensional alpha proton detection-based APSY experiment for backbone assignment of intrinsically disordered proteins. Yao X; Becker S; Zweckstetter M J Biomol NMR; 2014 Dec; 60(4):231-40. PubMed ID: 25367087 [TBL] [Abstract][Full Text] [Related]
3. Longitudinal relaxation properties of (1)H(N) and (1)H(α) determined by direct-detected (13)C NMR experiments to study intrinsically disordered proteins (IDPs). Hošek T; Gil-Caballero S; Pierattelli R; Brutscher B; Felli IC J Magn Reson; 2015 May; 254():19-26. PubMed ID: 25771525 [TBL] [Abstract][Full Text] [Related]
4. Amide proton exchange of a dynamic loop in cell extracts. Smith AE; Sarkar M; Young GB; Pielak GJ Protein Sci; 2013 Oct; 22(10):1313-9. PubMed ID: 23904228 [TBL] [Abstract][Full Text] [Related]
5. Combined H-N Cross-Polarization and Carbonyl Detection NMR Spectroscopy Allow to Record High-Resolution, High-Sensitivity Spectra of Alpha-Synuclein in Bacterial Cells. Lopez JM Methods Mol Biol; 2023; 2551():449-460. PubMed ID: 36310219 [TBL] [Abstract][Full Text] [Related]
6. Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder. McNulty BC; Young GB; Pielak GJ J Mol Biol; 2006 Feb; 355(5):893-7. PubMed ID: 16343531 [TBL] [Abstract][Full Text] [Related]
7. Distinct residual and disordered structures of alpha-synuclein analyzed by amide-proton exchange and NMR signal intensity. Okuwaki R; Shinmura I; Morita S; Matsugami A; Hayashi F; Goto Y; Nishimura C Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140464. PubMed ID: 32497661 [TBL] [Abstract][Full Text] [Related]
8. Studying Intrinsically Disordered Proteins under True In Vivo Conditions by Combined Cross-Polarization and Carbonyl-Detection NMR Spectroscopy. Lopez J; Schneider R; Cantrelle FX; Huvent I; Lippens G Angew Chem Int Ed Engl; 2016 Jun; 55(26):7418-22. PubMed ID: 27159340 [TBL] [Abstract][Full Text] [Related]
10. Nuclear magnetic resonance approaches for characterizing interactions between the bacterial chaperonin GroEL and unstructured proteins. Nishida N; Yagi-Utsumi M; Motojima F; Yoshida M; Shimada I; Kato K J Biosci Bioeng; 2013 Aug; 116(2):160-4. PubMed ID: 23567152 [TBL] [Abstract][Full Text] [Related]
11. Soft interactions and volume exclusion by polymeric crowders can stabilize or destabilize transient structure in disordered proteins depending on polymer concentration. Rusinga FI; Weis DD Proteins; 2017 Aug; 85(8):1468-1479. PubMed ID: 28425679 [TBL] [Abstract][Full Text] [Related]
12. Confronting the Invisible: Assignment of Protein Wong LE; Kim TH; Rennella E; Vallurupalli P; Kay LE J Phys Chem Lett; 2020 May; 11(9):3384-3389. PubMed ID: 32286073 [TBL] [Abstract][Full Text] [Related]
13. Paris-DÉCOR: A Protocol for the Determination of Fast Protein Backbone Amide Hydrogen Exchange Rates. Dass R; Mulder FAA Methods Mol Biol; 2020; 2141():337-344. PubMed ID: 32696366 [TBL] [Abstract][Full Text] [Related]
15. Longitudinal Spin Order Labeling on Multiple Quantum Coherences Enables NMR Analysis of Intrinsically Disordered Proteins at Ultrahigh Resolution. Im J; Lee K; Jung S; Kim E; Lee JH J Phys Chem Lett; 2021 Sep; 12(38):9315-9320. PubMed ID: 34543573 [TBL] [Abstract][Full Text] [Related]
16. Bacterial in-cell NMR of human α-synuclein: a disordered monomer by nature? Binolfi A; Theillet FX; Selenko P Biochem Soc Trans; 2012 Oct; 40(5):950-4. PubMed ID: 22988846 [TBL] [Abstract][Full Text] [Related]
17. Measuring hydrogen exchange in proteins by selective water saturation in (1)H- (15)N SOFAST/BEST-type experiments: advantages and limitations. Rennella E; Solyom Z; Brutscher B J Biomol NMR; 2014 Nov; 60(2-3):99-107. PubMed ID: 25173410 [TBL] [Abstract][Full Text] [Related]
18. In-cell NMR characterization of the secondary structure populations of a disordered conformation of α-synuclein within E. coli cells. Waudby CA; Camilloni C; Fitzpatrick AW; Cabrita LD; Dobson CM; Vendruscolo M; Christodoulou J PLoS One; 2013; 8(8):e72286. PubMed ID: 23991082 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen exchange of monomeric alpha-synuclein shows unfolded structure persists at physiological temperature and is independent of molecular crowding in Escherichia coli. Croke RL; Sallum CO; Watson E; Watt ED; Alexandrescu AT Protein Sci; 2008 Aug; 17(8):1434-45. PubMed ID: 18493022 [TBL] [Abstract][Full Text] [Related]
20. Automated Strong Cation-Exchange Cleanup To Remove Macromolecular Crowding Agents for Protein Hydrogen Exchange Mass Spectrometry. Rusinga FI; Weis DD Anal Chem; 2017 Jan; 89(2):1275-1282. PubMed ID: 27936623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]