BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 25611331)

  • 1. Distribution and frequencies of post-transcriptional modifications in tRNAs.
    Machnicka MA; Olchowik A; Grosjean H; Bujnicki JM
    RNA Biol; 2014; 11(12):1619-29. PubMed ID: 25611331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. tRNAmodpred: A computational method for predicting posttranscriptional modifications in tRNAs.
    Machnicka MA; Dunin-Horkawicz S; de Crécy-Lagard V; Bujnicki JM
    Methods; 2016 Sep; 107():34-41. PubMed ID: 27016142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii.
    Yu N; Jora M; Solivio B; Thakur P; Acevedo-Rocha CG; Randau L; de Crécy-Lagard V; Addepalli B; Limbach PA
    J Bacteriol; 2019 May; 201(9):. PubMed ID: 30745370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution.
    Roovers M; Droogmans L; Grosjean H
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33499018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To be or not to be modified: Miscellaneous aspects influencing nucleotide modifications in tRNAs.
    Barraud P; Tisné C
    IUBMB Life; 2019 Aug; 71(8):1126-1140. PubMed ID: 30932315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.
    Mitra S; Das P; Samadder A; Das S; Betai R; Chakrabarti J
    J Biomol Struct Dyn; 2015; 33(10):2104-20. PubMed ID: 25581620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. tRNA modifications: necessary for correct tRNA-derived fragments during the recovery from stress?
    Durdevic Z; Schaefer M
    Bioessays; 2013 Apr; 35(4):323-7. PubMed ID: 23315679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism.
    Kaneko T; Suzuki T; Kapushoc ST; Rubio MA; Ghazvini J; Watanabe K; Simpson L; Suzuki T
    EMBO J; 2003 Feb; 22(3):657-67. PubMed ID: 12554666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative genetic code for amino acids and transfer RNA revisited.
    Hamashima K; Kanai A
    Biomol Concepts; 2013 Jun; 4(3):309-18. PubMed ID: 25436582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Released selective pressure on a structural domain gives new insights on the functional relaxation of mitochondrial aspartyl-tRNA synthetase.
    Schwenzer H; Scheper GC; Zorn N; Moulinier L; Gaudry A; Leize E; Martin F; Florentz C; Poch O; Sissler M
    Biochimie; 2014 May; 100():18-26. PubMed ID: 24120687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Celebrating wobble decoding: Half a century and still much is new.
    Agris PF; Eruysal ER; Narendran A; Väre VYP; Vangaveti S; Ranganathan SV
    RNA Biol; 2018; 15(4-5):537-553. PubMed ID: 28812932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae.
    Hopper AK
    Genetics; 2013 May; 194(1):43-67. PubMed ID: 23633143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. mRNA expression in mitochondria of the red alga chondrus crispus requires a unique RNA-processing mechanism, internal cleavage of upstream tRNAs at pyrimidine 48.
    Richard O; Kloareg B; Boyen C
    J Mol Biol; 1999 May; 288(4):579-84. PubMed ID: 10329164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise analysis of modification status at various stage of tRNA maturation in Saccharomyces cerevisiae.
    Ohira T; Miyauchi K; Sakaguchi Y; Suzuki T; Suzuki T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):301-2. PubMed ID: 19749380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of intracellular compartmentalization on tRNA processing and modification.
    Kessler AC; Silveira d'Almeida G; Alfonzo JD
    RNA Biol; 2018; 15(4-5):554-566. PubMed ID: 28850002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partially modified tRNAs for the study of tRNA maturation and function.
    Schultz SK; Kothe U
    Methods Enzymol; 2021; 658():225-250. PubMed ID: 34517948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of tRNA Modifications and tRNA-Modifying Enzymes on Proteostasis and Human Disease.
    Pereira M; Francisco S; Varanda AS; Santos M; Santos MAS; Soares AR
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNAs as antibiotic targets.
    Chopra S; Reader J
    Int J Mol Sci; 2014 Dec; 16(1):321-49. PubMed ID: 25547494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The expanding world of tRNA modifications and their disease relevance.
    Suzuki T
    Nat Rev Mol Cell Biol; 2021 Jun; 22(6):375-392. PubMed ID: 33658722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle.
    Kuhn CD
    Bioessays; 2016 May; 38(5):465-73. PubMed ID: 26990636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.