BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25611340)

  • 1. Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors.
    Ozturk D; Yonucu S; Yilmaz D; Unlu MB
    Phys Med Biol; 2015 Feb; 60(4):1477-96. PubMed ID: 25611340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model.
    Jain RK; Tong RT; Munn LL
    Cancer Res; 2007 Mar; 67(6):2729-35. PubMed ID: 17363594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.
    Wu M; Frieboes HB; Chaplain MA; McDougall SR; Cristini V; Lowengrub JS
    J Theor Biol; 2014 Aug; 355():194-207. PubMed ID: 24751927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of the enhanced permeability and retention effect for liposome transport in solid tumors.
    Stapleton S; Milosevic M; Allen C; Zheng J; Dunne M; Yeung I; Jaffray DA
    PLoS One; 2013; 8(12):e81157. PubMed ID: 24312530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transvascular drug delivery in solid tumors.
    Yuan F
    Semin Radiat Oncol; 1998 Jul; 8(3):164-75. PubMed ID: 9634493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects.
    Maruyama K
    Adv Drug Deliv Rev; 2011 Mar; 63(3):161-9. PubMed ID: 20869415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy.
    Shamsi M; Sedaghatkish A; Dejam M; Saghafian M; Mohammadi M; Sanati-Nezhad A
    Drug Deliv; 2018 Nov; 25(1):846-861. PubMed ID: 29589479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implications of transvascular fluid exchange in nonlinear, biphasic analyses of flow-controlled infusion in brain.
    Smith JH; Starkweather KA; García JJ
    Bull Math Biol; 2012 Apr; 74(4):881-907. PubMed ID: 21979463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascular and interstitial barriers to delivery of therapeutic agents in tumors.
    Jain RK
    Cancer Metastasis Rev; 1990 Nov; 9(3):253-66. PubMed ID: 2292138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue.
    Smith JH; Humphrey JA
    Microvasc Res; 2007 Jan; 73(1):58-73. PubMed ID: 17069863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation.
    Stapleton S; Milosevic M; Tannock IF; Allen C; Jaffray DA
    J Control Release; 2015 Aug; 211():163-70. PubMed ID: 26070245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extravasating Neutrophils Open Vascular Barrier and Improve Liposomes Delivery to Tumors.
    Naumenko VA; Vlasova KY; Garanina AS; Melnikov PA; Potashnikova DM; Vishnevskiy DA; Vodopyanov SS; Chekhonin VP; Abakumov MA; Majouga AG
    ACS Nano; 2019 Nov; 13(11):12599-12612. PubMed ID: 31609576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of heterogeneous vasculature on interstitial transport within a solid tumor.
    Zhao J; Salmon H; Sarntinoranont M
    Microvasc Res; 2007 May; 73(3):224-36. PubMed ID: 17307203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
    Li L; ten Hagen TL; Bolkestein M; Gasselhuber A; Yatvin J; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA
    J Control Release; 2013 Apr; 167(2):130-7. PubMed ID: 23391444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy.
    Yonucu S; Yιlmaz D; Phipps C; Unlu MB; Kohandel M
    PLoS Comput Biol; 2017 Sep; 13(9):e1005724. PubMed ID: 28922358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liposomes. Opportunities in drug delivery.
    Allen TM
    Drugs; 1997; 54 Suppl 4():8-14. PubMed ID: 9361956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor - Computational approach.
    Moradi Kashkooli F; Soltani M; Rezaeian M; Taatizadeh E; Hamedi MH
    Microvasc Res; 2019 May; 123():111-124. PubMed ID: 30711547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.