BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 25611343)

  • 21. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical Hâ‚‚ generation.
    Wilker MB; Shinopoulos KE; Brown KA; Mulder DW; King PW; Dukovic G
    J Am Chem Soc; 2014 Mar; 136(11):4316-24. PubMed ID: 24564271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.
    Li P; Zhou Y; Li H; Xu Q; Meng X; Wang X; Xiao M; Zou Z
    Chem Commun (Camb); 2015 Jan; 51(4):800-3. PubMed ID: 25424013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-driven carbon-carbon bond formation via CO
    Hamby H; Li B; Shinopoulos KE; Keller HR; Elliott SJ; Dukovic G
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):135-140. PubMed ID: 31852819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CdS Nanowires Decorated with Ultrathin MoS2 Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution.
    He J; Chen L; Wang F; Liu Y; Chen P; Au CT; Yin SF
    ChemSusChem; 2016 Mar; 9(6):624-30. PubMed ID: 26879708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation.
    Yu TH; Cheng WY; Chao KJ; Lu SY
    Nanoscale; 2013 Aug; 5(16):7356-60. PubMed ID: 23824310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-CdS confined within titanate nanotubes for efficient photocatalytic hydrogen production under visible light illumination.
    Long L; Yu X; Wu L; Li J; Li X
    Nanotechnology; 2014 Jan; 25(3):035603. PubMed ID: 24356534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards Carbon-Neutral CO2 Conversion to Hydrocarbons.
    Mattia D; Jones MD; O'Byrne JP; Griffiths OG; Owen RE; Sackville E; McManus M; Plucinski P
    ChemSusChem; 2015 Dec; 8(23):4064-72. PubMed ID: 26564267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes.
    Brown KA; Wilker MB; Boehm M; Dukovic G; King PW
    J Am Chem Soc; 2012 Mar; 134(12):5627-36. PubMed ID: 22352762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient and selective photocatalytic reduction of nitroarenes using the Ni2P/CdS catalyst under visible-light irradiation.
    Gao WZ; Xu Y; Chen Y; Fu WF
    Chem Commun (Camb); 2015 Aug; 51(67):13217-20. PubMed ID: 26193992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible-light Homogeneous Photocatalytic Conversion of CO
    Rao H; Bonin J; Robert M
    ChemSusChem; 2017 Nov; 10(22):4447-4450. PubMed ID: 28862388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes.
    Utterback JK; Wilker MB; Brown KA; King PW; Eaves JD; Dukovic G
    Phys Chem Chem Phys; 2015 Feb; 17(8):5538-42. PubMed ID: 25623885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes.
    Deka S; Quarta A; Lupo MG; Falqui A; Boninelli S; Giannini C; Morello G; De Giorgi M; Lanzani G; Spinella C; Cingolani R; Pellegrino T; Manna L
    J Am Chem Soc; 2009 Mar; 131(8):2948-58. PubMed ID: 19206236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles.
    Kim JC; Choi J; Lee YB; Hong JH; Lee JI; Yang JW; Lee WI; Hur NH
    Chem Commun (Camb); 2006 Dec; (48):5024-6. PubMed ID: 17146515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-Yield and Selective Photoelectrocatalytic Reduction of CO2 to Formate by Metallic Copper Decorated Co3O4 Nanotube Arrays.
    Shen Q; Chen Z; Huang X; Liu M; Zhao G
    Environ Sci Technol; 2015 May; 49(9):5828-35. PubMed ID: 25844931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of titanate nanotube-CdS nanocomposites with enhanced visible light photocatalytic activity.
    Tang ZR; Yin X; Zhang Y; Xu YJ
    Inorg Chem; 2013 Oct; 52(20):11758-66. PubMed ID: 24074302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties.
    Xiao M; Wang L; Wu Y; Huang X; Dang Z
    Nanotechnology; 2008 Jan; 19(1):015706. PubMed ID: 21730547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene oxide-CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation.
    Gao P; Liu J; Sun DD; Ng W
    J Hazard Mater; 2013 Apr; 250-251():412-20. PubMed ID: 23500421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels.
    Varghese OK; Paulose M; Latempa TJ; Grimes CA
    Nano Lett; 2009 Feb; 9(2):731-7. PubMed ID: 19173633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.