These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25611367)

  • 1. Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami.
    Doane TL; Alam R; Maye MM
    Nanoscale; 2015 Feb; 7(7):2883-8. PubMed ID: 25611367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots.
    Weichelt R; Leubner S; Henning-Knechtel A; Mertig M; Gaponik N; Schmidt TL; Eychmüller A
    Small; 2016 Sep; 12(34):4763-71. PubMed ID: 27409730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex wireframe DNA nanostructures from simple building blocks.
    Wang W; Chen S; An B; Huang K; Bai T; Xu M; Bellot G; Ke Y; Xiang Y; Wei B
    Nat Commun; 2019 Mar; 10(1):1067. PubMed ID: 30842408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.
    Shi X; Lu W; Wang Z; Pan L; Cui G; Xu J; LaBean TH
    Nanotechnology; 2014 Feb; 25(7):075602. PubMed ID: 24451169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward three-dimensional microelectronic systems: directed self-assembly of silicon microcubes via DNA surface functionalization.
    Lämmerhardt N; Merzsch S; Ledig J; Bora A; Waag A; Tornow M; Mischnick P
    Langmuir; 2013 Jul; 29(26):8410-6. PubMed ID: 23786592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA origami frame filled with two types of single-stranded tiles.
    Chen C; Xu J; Ruan L; Zhao H; Li X; Shi X
    Nanoscale; 2022 Apr; 14(14):5340-5346. PubMed ID: 35352725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA nanotechnology for nanophotonic applications.
    Samanta A; Banerjee S; Liu Y
    Nanoscale; 2015 Feb; 7(6):2210-20. PubMed ID: 25592639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex DNA nanostructures from oligonucleotide ensembles.
    Mathur D; Henderson ER
    ACS Synth Biol; 2013 Apr; 2(4):180-5. PubMed ID: 23656476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and self-folding of amphiphilic DNA origami.
    Zhou C; Wang D; Dong Y; Xin L; Sun Y; Yang Z; Liu D
    Small; 2015 Mar; 11(9-10):1161-4. PubMed ID: 25087844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial DNA lattice fabrication by noncomplementarity and geometrical incompatibility.
    Shin J; Kim J; Amin R; Kim S; Kwon YH; Park SH
    ACS Nano; 2011 Jun; 5(6):5175-9. PubMed ID: 21619064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular DNA-streptavidin nanocircles with a covalently attached oligonucleotide moiety.
    Niemeyer CM; Adler M; Gao S; Chi L
    J Biomol Struct Dyn; 2002 Oct; 20(2):223-30. PubMed ID: 12354074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of self-assembled DNA nanostructures.
    Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H
    Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of high local frustration in DNA origami.
    Kosinski R; Mukhortava A; Pfeifer W; Candelli A; Rauch P; Saccà B
    Nat Commun; 2019 Mar; 10(1):1061. PubMed ID: 30837459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Routing of individual polymers in designed patterns.
    Knudsen JB; Liu L; Bank Kodal AL; Madsen M; Li Q; Song J; Woehrstein JB; Wickham SF; Strauss MT; Schueder F; Vinther J; Krissanaprasit A; Gudnason D; Smith AA; Ogaki R; Zelikin AN; Besenbacher F; Birkedal V; Yin P; Shih WM; Jungmann R; Dong M; Gothelf KV
    Nat Nanotechnol; 2015 Oct; 10(10):892-8. PubMed ID: 26322946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ssDNA binding reveals the atomic structure of graphene.
    Husale BS; Sahoo S; Radenovic A; Traversi F; Annibale P; Kis A
    Langmuir; 2010 Dec; 26(23):18078-82. PubMed ID: 20977263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed self-assembly in laponite/CdSe/polyaniline nanocomposites.
    Kehlbeck JD; Hagerman ME; Cohen BD; Eliseo J; Fox M; Hoek W; Karlin D; Leibner E; Nagle E; Nolan M; Schaefer I; Toney A; Topka M; Uluski R; Wood C
    Langmuir; 2008 Sep; 24(17):9727-38. PubMed ID: 18661961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2006 Dec; 22(26):11346-52. PubMed ID: 17154624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.