These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 25611783)
21. Formation of ice-like water structure on the surface of an antifreeze protein. Smolin N; Daggett V J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017 [TBL] [Abstract][Full Text] [Related]
22. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900 [TBL] [Abstract][Full Text] [Related]
23. Dynamical mechanism of antifreeze proteins to prevent ice growth. Kutschan B; Morawetz K; Thoms S Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022711. PubMed ID: 25215762 [TBL] [Abstract][Full Text] [Related]
24. The basis for hyperactivity of antifreeze proteins. Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111 [TBL] [Abstract][Full Text] [Related]
25. High Water Density at Non-Ice-Binding Surfaces Contributes to the Hyperactivity of Antifreeze Proteins. Biswas AD; Barone V; Daidone I J Phys Chem Lett; 2021 Sep; 12(36):8777-8783. PubMed ID: 34491750 [TBL] [Abstract][Full Text] [Related]
26. Effect of a mutation on the structure and dynamics of an alpha-helical antifreeze protein in water and ice. Graether SP; Slupsky CM; Sykes BD Proteins; 2006 May; 63(3):603-10. PubMed ID: 16437556 [TBL] [Abstract][Full Text] [Related]
27. Molecular structure of a hyperactive antifreeze protein adsorbed to ice. Meister K; Moll CJ; Chakraborty S; Jana B; DeVries AL; Ramløv H; Bakker HJ J Chem Phys; 2019 Apr; 150(13):131101. PubMed ID: 30954062 [TBL] [Abstract][Full Text] [Related]
29. Comparative study of hydration shell dynamics around a hyperactive antifreeze protein and around ubiquitin. Duboué-Dijon E; Laage D J Chem Phys; 2014 Dec; 141(22):22D529. PubMed ID: 25494800 [TBL] [Abstract][Full Text] [Related]
30. Unusual structural properties of water within the hydration shell of hyperactive antifreeze protein. Kuffel A; Czapiewski D; Zielkiewicz J J Chem Phys; 2014 Aug; 141(5):055103. PubMed ID: 25106616 [TBL] [Abstract][Full Text] [Related]
31. Biophysical and biochemical aspects of antifreeze proteins: Using computational tools to extract atomistic information. Kar RK; Bhunia A Prog Biophys Mol Biol; 2015 Nov; 119(2):194-204. PubMed ID: 26362837 [TBL] [Abstract][Full Text] [Related]
32. Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups. Krishnamoorthy AN; Holm C; Smiatek J J Phys Chem B; 2014 Oct; 118(40):11613-21. PubMed ID: 25207443 [TBL] [Abstract][Full Text] [Related]
33. The remarkable hydration of the antifreeze protein Maxi: a computational study. Sharp KA J Chem Phys; 2014 Dec; 141(22):22D510. PubMed ID: 25494781 [TBL] [Abstract][Full Text] [Related]
34. Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation. Nguyen H; Le L; Ho TB J Chem Phys; 2014 Jun; 140(22):225101. PubMed ID: 24929413 [TBL] [Abstract][Full Text] [Related]
35. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370 [TBL] [Abstract][Full Text] [Related]
36. Source of the ice-binding specificity of antifreeze protein type I. Dalal P; Sönnichsen FD J Chem Inf Comput Sci; 2000; 40(5):1276-84. PubMed ID: 11045824 [TBL] [Abstract][Full Text] [Related]
37. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations. Sun T; Gauthier SY; Campbell RL; Davies PL J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748 [TBL] [Abstract][Full Text] [Related]
38. High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Modig K; Qvist J; Marshall CB; Davies PL; Halle B Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761 [TBL] [Abstract][Full Text] [Related]
39. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity. Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764 [TBL] [Abstract][Full Text] [Related]
40. Combined molecular dynamics and neural network method for predicting protein antifreeze activity. Kozuch DJ; Stillinger FH; Debenedetti PG Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13252-13257. PubMed ID: 30530650 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]