BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25612004)

  • 1. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation.
    Cozzarelli IM; Schreiber ME; Erickson ML; Ziegler BA
    Ground Water; 2016 Jan; 54(1):35-45. PubMed ID: 25612004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM
    J Contam Hydrol; 2017 Sep; 204():90-101. PubMed ID: 28797670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN.
    Ng GH; Bekins BA; Cozzarelli IM; Baedecker MJ; Bennett PC; Amos RT
    J Contam Hydrol; 2014 Aug; 164():1-15. PubMed ID: 24908586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crude oil at the bemidji site: 25 years of monitoring, modeling, and understanding.
    Essaid HI; Bekins BA; Herkelrath WN; Delin GN
    Ground Water; 2011; 49(5):706-26. PubMed ID: 20015222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rates of As and Trace-Element Mobilization Caused by Fe Reduction in Mixed BTEX-Ethanol Experimental Plumes.
    Ziegler BA; McGuire JT; Cozzarelli IM
    Environ Sci Technol; 2015 Nov; 49(22):13179-89. PubMed ID: 26486694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crude Oil Metabolites in Groundwater at Two Spill Sites.
    Bekins BA; Cozzarelli IM; Erickson ML; Steenson RA; Thorn KA
    Ground Water; 2016 Sep; 54(5):681-691. PubMed ID: 27010754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study.
    Naidu R; Nandy S; Megharaj M; Kumar RP; Chadalavada S; Chen Z; Bowman M
    Biodegradation; 2012 Nov; 23(6):881-95. PubMed ID: 22899178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contamination levels and preliminary assessment of the technical feasibility of employing natural attenuation in 5 priority areas of Presidente Bernardes Refinery in Cubatão, São Paulo, Brazil.
    Schneider RP; Morano SC; Gigena MA; Missawa SK; Rocha RC; Da Silva LR; Ellert N; Kataoka S; Katsuragi C; Rosa Cda S; Filho LC
    Environ Monit Assess; 2006 May; 116(1-3):21-52. PubMed ID: 16779580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for calculating growth rates of petroleum hydrocarbon plumes.
    Bekins BA; Cozzarelli IM; Curtis GP
    Ground Water; 2005; 43(6):817-26. PubMed ID: 16324003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural attenuation of petroleum hydrocarbons-a study of biodegradation effects in groundwater (Vitanovac, Serbia).
    Marić N; Matić I; Papić P; Beškoski VP; Ilić M; Gojgić-Cvijović G; Miletić S; Nikić Z; Vrvić MM
    Environ Monit Assess; 2018 Jan; 190(2):89. PubMed ID: 29353425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate of arsenic, phosphate and ammonium plumes in a coastal aquifer affected by saltwater intrusion.
    Colombani N; Mastrocicco M; Prommer H; Sbarbati C; Petitta M
    J Contam Hydrol; 2015 Aug; 179():116-31. PubMed ID: 26093106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progression of natural attenuation processes at a crude-oil spill site: I. Geochemical evolution of the plume.
    Cozzarelli IM; Bekins BA; Baedecker MJ; Aiken GR; Eganhouse RP; Tuccillo ME
    J Contam Hydrol; 2001 Dec; 53(3-4):369-85. PubMed ID: 11820478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site.
    Lv H; Su X; Wang Y; Dai Z; Liu M
    Chemosphere; 2018 Sep; 206():293-301. PubMed ID: 29753292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolved fulvic acids from a high arsenic aquifer shuttle electrons to enhance microbial iron reduction.
    Kulkarni HV; Mladenov N; McKnight DM; Zheng Y; Kirk MF; Nemergut DR
    Sci Total Environ; 2018 Feb; 615():1390-1395. PubMed ID: 29751443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural attenuation of MTBE at two petroleum-hydrocarbon spill sites.
    Chen KF; Kao CM; Wang JY; Chen TY; Chien CC
    J Hazard Mater; 2005 Oct; 125(1-3):10-6. PubMed ID: 16046063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emulsified polycolloid substrate biobarrier for benzene and petroleum-hydrocarbon plume containment and migration control - A field-scale study.
    Lee TH; Cao WZ; Tsang DCW; Sheu YT; Shia KF; Kao CM
    Sci Total Environ; 2019 May; 666():839-848. PubMed ID: 30818208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of petroleum-contaminated groundwater during natural attenuation: a case study in northeast China.
    Qian H; Zhang Y; Wang J; Si C; Chen Z
    Environ Monit Assess; 2018 Jan; 190(2):80. PubMed ID: 29332176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Documentation of time-scales for onset of natural attenuation in an aquifer treated by a crude-oil recovery system.
    Ponsin V; Maier J; Guelorget Y; Hunkeler D; Bouchard D; Villavicencio H; Höhener P
    Sci Total Environ; 2015 Apr; 512-513():62-73. PubMed ID: 25617779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization of arsenic in aquifers from the Datong Basin, China: evidence from geochemical and iron isotopic data.
    Xie X; Johnson TM; Wang Y; Lundstrom CC; Ellis A; Wang X; Duan M
    Chemosphere; 2013 Feb; 90(6):1878-84. PubMed ID: 23146274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.