These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells. Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379 [TBL] [Abstract][Full Text] [Related]
10. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
11. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties. Palmstrom AF; Santra PK; Bent SF Nanoscale; 2015 Aug; 7(29):12266-83. PubMed ID: 26147328 [TBL] [Abstract][Full Text] [Related]
12. Room temperature photoluminescence of PbS quantum dots: Capping agent and thermal effect. Kong HS; Kim BJ; Kang KS Luminescence; 2019 May; 34(3):387-390. PubMed ID: 30811807 [TBL] [Abstract][Full Text] [Related]
13. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. Weiss EA Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589 [TBL] [Abstract][Full Text] [Related]
14. Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence. Justo Y; Moreels I; Lambert K; Hens Z Nanotechnology; 2010 Jul; 21(29):295606. PubMed ID: 20601759 [TBL] [Abstract][Full Text] [Related]
15. Inorganic Ligand Thiosulfate-Capped Quantum Dots for Efficient Quantum Dot Sensitized Solar Cells. Ren Z; Yu J; Pan Z; Wang J; Zhong X ACS Appl Mater Interfaces; 2017 Jun; 9(22):18936-18944. PubMed ID: 28508629 [TBL] [Abstract][Full Text] [Related]
16. Photophysical and electronic properties of bismuth-perovskite shelled lead sulfide quantum dots. Abdu-Aguye M; Bederak D; Kahmann S; Killilea N; Sytnyk M; Heiss W; Loi MA J Chem Phys; 2019 Dec; 151(21):214702. PubMed ID: 31822074 [TBL] [Abstract][Full Text] [Related]
17. Colloidal Quantum Dot Photovoltaics Enhanced by Perovskite Shelling. Yang Z; Janmohamed A; Lan X; García de Arquer FP; Voznyy O; Yassitepe E; Kim GH; Ning Z; Gong X; Comin R; Sargent EH Nano Lett; 2015 Nov; 15(11):7539-43. PubMed ID: 26439147 [TBL] [Abstract][Full Text] [Related]
19. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Fischer A; Rollny L; Pan J; Carey GH; Thon SM; Hoogland S; Voznyy O; Zhitomirsky D; Kim JY; Bakr OM; Sargent EH Adv Mater; 2013 Oct; 25(40):5742-9. PubMed ID: 23934957 [TBL] [Abstract][Full Text] [Related]
20. The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits. Goswami PN; Mandal D; Rath AK Nanoscale; 2018 Jan; 10(3):1072-1080. PubMed ID: 29271437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]