BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25612290)

  • 1. Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein-protein interactions on cell membranes.
    Lindén S; Singh MK; Wegner KD; Regairaz M; Dautry F; Treussart F; Hildebrandt N
    Dalton Trans; 2015 Mar; 44(11):4994-5003. PubMed ID: 25612290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Resolved Nucleic Acid Hybridization Beacons Utilizing Unimolecular and Toehold-Mediated Strand Displacement Designs.
    Massey M; Ancona MG; Medintz IL; Algar WR
    Anal Chem; 2015 Dec; 87(23):11923-31. PubMed ID: 26562366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging.
    Afsari HS; Cardoso Dos Santos M; Lindén S; Chen T; Qiu X; van Bergen En Henegouwen PM; Jennings TL; Susumu K; Medintz IL; Hildebrandt N; Miller LW
    Sci Adv; 2016 Jun; 2(6):e1600265. PubMed ID: 27386579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vivo spectral multiplexing approach for the cooperative imaging of different disease-related biomarkers with near-infrared fluorescent forster resonance energy transfer probes.
    Busch C; Schröter T; Grabolle M; Wenzel M; Kempe H; Kaiser WA; Resch-Genger U; Hilger I
    J Nucl Med; 2012 Apr; 53(4):638-46. PubMed ID: 22407968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection.
    Nchimi-Nono K; Wegner KD; Lindén S; Lecointre A; Ehret-Sabatier L; Shakir S; Hildebrandt N; Charbonnière LJ
    Org Biomol Chem; 2013 Oct; 11(38):6493-501. PubMed ID: 23851931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays.
    Cywiński PJ; Nchimi Nono K; Charbonnière LJ; Hammann T; Löhmannsröben HG
    Phys Chem Chem Phys; 2014 Apr; 16(13):6060-7. PubMed ID: 24556813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET-Modulated Multihybrid Nanoparticles for Brightness-Equalized Single-Wavelength Barcoding.
    Chen C; Corry B; Huang L; Hildebrandt N
    J Am Chem Soc; 2019 Jul; 141(28):11123-11141. PubMed ID: 31251609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.
    Yuan L; Lin W; Zheng K; Zhu S
    Acc Chem Res; 2013 Jul; 46(7):1462-73. PubMed ID: 23419062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A homogeneous G protein-coupled receptor ligand binding assay based on time-resolved fluorescence resonance energy transfer.
    Hu LA; Zhou T; Hamman BD; Liu Q
    Assay Drug Dev Technol; 2008 Aug; 6(4):543-50. PubMed ID: 18699727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating Quantum Dot Performance in Homogeneous FRET Immunoassays for Prostate Specific Antigen.
    Bhuckory S; Lefebvre O; Qiu X; Wegner KD; Hildebrandt N
    Sensors (Basel); 2016 Feb; 16(2):197. PubMed ID: 26861327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of heterotrimeric G-protein and regulators of G-protein signaling interactions by time-resolved fluorescence resonance energy transfer.
    Leifert WR; Bailey K; Cooper TH; Aloia AL; Glatz RV; McMurchie EJ
    Anal Biochem; 2006 Aug; 355(2):201-12. PubMed ID: 16729956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET.
    Bhuckory S; Wegner KD; Qiu X; Wu YT; Jennings TL; Incamps A; Hildebrandt N
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32806745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanides and quantum dots as Förster resonance energy transfer agents for diagnostics and cellular imaging.
    Geißler D; Linden S; Liermann K; Wegner KD; Charbonnière LJ; Hildebrandt N
    Inorg Chem; 2014 Feb; 53(4):1824-38. PubMed ID: 24099579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring a coordinated exchange process in a four-component biological interaction system: development of a time-resolved terbium-based one-donor/three-acceptor multicolor FRET system.
    Kim SH; Gunther JR; Katzenellenbogen JA
    J Am Chem Soc; 2010 Apr; 132(13):4685-92. PubMed ID: 20230029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significant FRET between SWNT/DNA and rare earth ions: a signature of their spatial correlations.
    Ignatova T; Najafov H; Ryasnyanskiy A; Biaggio I; Zheng M; Rotkin SV
    ACS Nano; 2011 Jul; 5(7):6052-9. PubMed ID: 21702470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional FRET Multiplexing for DNA Quantification with Attomolar Detection Limits.
    Qiu X; Guo J; Xu J; Hildebrandt N
    J Phys Chem Lett; 2018 Aug; 9(15):4379-4384. PubMed ID: 30016106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.