These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 25612725)

  • 1. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.
    Kim CE; Lim DH; Jang JH; Kim HJ; Yoon SP; Han J; Nam SW; Hong SA; Soon A; Ham HC
    J Chem Phys; 2015 Jan; 142(3):034707. PubMed ID: 25612725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying.
    Cheng D; Qiu X; Yu H
    Phys Chem Chem Phys; 2014 Oct; 16(38):20377-81. PubMed ID: 25144838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction.
    Tripkovic V; Hansen HA; Rossmeisl J; Vegge T
    Phys Chem Chem Phys; 2015 May; 17(17):11647-57. PubMed ID: 25865333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study.
    Sabbe MK; Laín L; Reyniers MF; Marin GB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12197-214. PubMed ID: 23811813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy.
    Mun BS; Watanabe M; Rossi M; Stamenkovic V; Markovic NM; Ross PN
    J Chem Phys; 2005 Nov; 123(20):204717. PubMed ID: 16351303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity.
    Ramirez-Caballero GE; Hirunsit P; Balbuena PB
    J Chem Phys; 2010 Oct; 133(13):134705. PubMed ID: 20942553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structures.
    Menning CA; Chen JG
    J Chem Phys; 2008 Apr; 128(16):164703. PubMed ID: 18447475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals.
    Kitchin JR; Nørskov JK; Barteau MA; Chen JG
    J Chem Phys; 2004 Jun; 120(21):10240-6. PubMed ID: 15268048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment.
    Menning CA; Hwu HH; Chen JG
    J Phys Chem B; 2006 Aug; 110(31):15471-7. PubMed ID: 16884269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between subsurface ordering, surface segregation, and adsorption on Pt-Ti(111) near-surface alloys.
    Chen W; Dalach P; Schneider WF; Wolverton C
    Langmuir; 2012 Mar; 28(10):4683-93. PubMed ID: 22352380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe).
    Duan Z; Wang G
    Phys Chem Chem Phys; 2011 Dec; 13(45):20178-87. PubMed ID: 22187733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Element-Based Generalized Coordination Number for Predicting the Oxygen Binding Energy on Pt
    Nanba Y; Koyama M
    ACS Omega; 2021 Feb; 6(4):3218-3226. PubMed ID: 33553938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying.
    Stephens IE; Bondarenko AS; Perez-Alonso FJ; Calle-Vallejo F; Bech L; Johansson TP; Jepsen AK; Frydendal R; Knudsen BP; Rossmeisl J; Chorkendorff I
    J Am Chem Soc; 2011 Apr; 133(14):5485-91. PubMed ID: 21417329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site preference of NH3-adsorption on Co, Pt and CoPt surfaces: the role of charge transfer, magnetism and strain.
    Bhattacharjee S; Gupta K; Jung N; Yoo SJ; Waghmare UV; Lee SC
    Phys Chem Chem Phys; 2015 Apr; 17(14):9335-40. PubMed ID: 25760894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts.
    Noh SH; Seo MH; Seo JK; Fischer P; Han B
    Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segregation of Pt(28)Rh(27) bimetallic nanoparticles: a first-principles study.
    Yuge K
    J Phys Condens Matter; 2010 Jun; 22(24):245401. PubMed ID: 21393781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal.
    Duan Z; Zhong J; Wang G
    J Chem Phys; 2010 Sep; 133(11):114701. PubMed ID: 20866148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving electrocatalysts for O(2) reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd(3)Fe(111) single-crystal alloy.
    Zhou WP; Yang X; Vukmirovic MB; Koel BE; Jiao J; Peng G; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2009 Sep; 131(35):12755-62. PubMed ID: 19722720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.