These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 25612871)
1. 2D-DIGE screening of high-productive CHO cells under glucose limitation--basic changes in the proteome equipment and hints for epigenetic effects. Wingens M; Gätgens J; Schmidt A; Albaum SP; Büntemeyer H; Noll T; Hoffrogge R J Biotechnol; 2015 May; 201():86-97. PubMed ID: 25612871 [TBL] [Abstract][Full Text] [Related]
2. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Liu Z; Dai S; Bones J; Ray S; Cha S; Karger BL; Li JJ; Wilson L; Hinckle G; Rossomando A Biotechnol Prog; 2015; 31(4):1026-38. PubMed ID: 25857574 [TBL] [Abstract][Full Text] [Related]
3. Metabolic analysis of antibody producing CHO cells in fed-batch production. Dean J; Reddy P Biotechnol Bioeng; 2013 Jun; 110(6):1735-47. PubMed ID: 23296898 [TBL] [Abstract][Full Text] [Related]
4. Proteomic profiling of CHO cells with enhanced rhBMP-2 productivity following co-expression of PACEsol. Meleady P; Henry M; Gammell P; Doolan P; Sinacore M; Melville M; Francullo L; Leonard M; Charlebois T; Clynes M Proteomics; 2008 Jul; 8(13):2611-24. PubMed ID: 18546152 [TBL] [Abstract][Full Text] [Related]
5. Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Kim JY; Kim YG; Han YK; Choi HS; Kim YH; Lee GM Appl Microbiol Biotechnol; 2011 Mar; 89(6):1917-28. PubMed ID: 21286710 [TBL] [Abstract][Full Text] [Related]
6. Responses of CHO cell lines to increased pCO2 at normal (37 °C) and reduced (33 °C) culture temperatures. Darja O; Stanislav M; Saša S; Andrej F; Lea B; Branka J J Biotechnol; 2016 Feb; 219():98-109. PubMed ID: 26707809 [TBL] [Abstract][Full Text] [Related]
7. Sustained productivity in recombinant Chinese hamster ovary (CHO) cell lines: proteome analysis of the molecular basis for a process-related phenotype. Meleady P; Doolan P; Henry M; Barron N; Keenan J; O'Sullivan F; Clarke C; Gammell P; Melville MW; Leonard M; Clynes M BMC Biotechnol; 2011 Jul; 11():78. PubMed ID: 21781345 [TBL] [Abstract][Full Text] [Related]
8. An omics approach to rational feed: Enhancing growth in CHO cultures with NMR metabolomics and 2D-DIGE proteomics. Blondeel EJM; Ho R; Schulze S; Sokolenko S; Guillemette SR; Slivac I; Durocher Y; Guillemette JG; McConkey BJ; Chang D; Aucoin MG J Biotechnol; 2016 Sep; 234():127-138. PubMed ID: 27496566 [TBL] [Abstract][Full Text] [Related]
9. Dependence on glucose limitation of the pCO2 influences on CHO cell growth, metabolism and IgG production. Takuma S; Hirashima C; Piret JM Biotechnol Bioeng; 2007 Aug; 97(6):1479-88. PubMed ID: 17318909 [TBL] [Abstract][Full Text] [Related]
10. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation. Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616 [TBL] [Abstract][Full Text] [Related]
11. Proteome analysis of antibody-expressing CHO cells in response to hyperosmotic pressure. Lee MS; Kim KW; Kim YH; Lee GM Biotechnol Prog; 2003; 19(6):1734-41. PubMed ID: 14656149 [TBL] [Abstract][Full Text] [Related]
12. Filter-Aided Sample Preparation (FASP) for Improved Proteome Analysis of Recombinant Chinese Hamster Ovary Cells. Coleman O; Henry M; Clynes M; Meleady P Methods Mol Biol; 2017; 1603():187-194. PubMed ID: 28493131 [TBL] [Abstract][Full Text] [Related]
13. Cell line profiling to improve monoclonal antibody production. Kang S; Ren D; Xiao G; Daris K; Buck L; Enyenihi AA; Zubarev R; Bondarenko PV; Deshpande R Biotechnol Bioeng; 2014 Apr; 111(4):748-60. PubMed ID: 24249214 [TBL] [Abstract][Full Text] [Related]
14. Two-Dimensional Gel Electrophoresis and 2D-DIGE. Meleady P Methods Mol Biol; 2023; 2596():3-15. PubMed ID: 36378427 [TBL] [Abstract][Full Text] [Related]
15. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism. Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321 [TBL] [Abstract][Full Text] [Related]
16. Analysis of dynamic changes in the proteome of a Bcl-XL overexpressing Chinese hamster ovary cell culture during exponential and stationary phases. Carlage T; Kshirsagar R; Zang L; Janakiraman V; Hincapie M; Lyubarskaya Y; Weiskopf A; Hancock WS Biotechnol Prog; 2012; 28(3):814-23. PubMed ID: 22556165 [TBL] [Abstract][Full Text] [Related]
17. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Sommeregger W; Mayrhofer P; Steinfellner W; Reinhart D; Henry M; Clynes M; Meleady P; Kunert R Biotechnol Bioeng; 2016 Sep; 113(9):1902-12. PubMed ID: 26913574 [TBL] [Abstract][Full Text] [Related]
18. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Luo J; Vijayasankaran N; Autsen J; Santuray R; Hudson T; Amanullah A; Li F Biotechnol Bioeng; 2012 Jan; 109(1):146-56. PubMed ID: 21964570 [TBL] [Abstract][Full Text] [Related]
19. Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Valente KN; Lenhoff AM; Lee KH Biotechnol Bioeng; 2015 Jun; 112(6):1232-42. PubMed ID: 25502542 [TBL] [Abstract][Full Text] [Related]
20. A DIGE approach for the assessment of differential expression of the CHO proteome under sodium butyrate addition: Effect of Bcl-x(L) overexpression. Baik JY; Lee GM Biotechnol Bioeng; 2010 Feb; 105(2):358-67. PubMed ID: 19739093 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]