BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 25612888)

  • 21. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.
    Leung DHL; Lim YS; Uma K; Pan GT; Lin JH; Chong S; Yang TC
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1170-1186. PubMed ID: 33200267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of 3,3',4',5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1.
    Wang YP; Yu SS; Zhang HL; Li WW; Cheng YY; Yu HQ
    Sci Rep; 2015 Jan; 5():7991. PubMed ID: 25612888
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conduction-band edge dependence of carbon-coated hematite stimulated extracellular electron transfer of Shewanella oneidensis in bioelectrochemical systems.
    Zhou S; Tang J; Yuan Y
    Bioelectrochemistry; 2015 Apr; 102():29-34. PubMed ID: 25483997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway.
    Yang Y; Ding Y; Hu Y; Cao B; Rice SA; Kjelleberg S; Song H
    ACS Synth Biol; 2015 Jul; 4(7):815-23. PubMed ID: 25621739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Possible causes of excess sludge reduction adding metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), in sequence batch reactors.
    Feng XC; Guo WQ; Yang SS; Zheng HS; Du JS; Wu QL; Ren NQ
    Bioresour Technol; 2014 Dec; 173():96-103. PubMed ID: 25285765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater.
    Liu XW; Li WW; Yu HQ
    Chem Soc Rev; 2014 Nov; 43(22):7718-45. PubMed ID: 23959403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1.
    Wu C; Cheng YY; Li BB; Li WW; Li DB; Yu HQ
    Bioresour Technol; 2013 May; 136():711-4. PubMed ID: 23558182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manipulation of microbial extracellular electron transfer by changing molecular structure of phenazine-type redox mediators.
    Chen JJ; Chen W; He H; Li DB; Li WW; Xiong L; Yu HQ
    Environ Sci Technol; 2013 Jan; 47(2):1033-9. PubMed ID: 23244024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution variation of a metabolic uncoupler, 2,6-dichlorophenol (2,6-DCP) in long-term sludge culture and their effects on sludge reduction and biological inhibition.
    Tian Y; Zhang J; Wu D; Li Z; Cui Y
    Water Res; 2013 Jan; 47(1):279-88. PubMed ID: 23123050
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SMP production by activated sludge in the presence of a metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS).
    Li Y; Li AM; Xu J; Liu B; Fu LC; Li WW; Yu HQ
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1313-21. PubMed ID: 22159739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions.
    Pinchuk GE; Geydebrekht OV; Hill EA; Reed JL; Konopka AE; Beliaev AS; Fredrickson JK
    Appl Environ Microbiol; 2011 Dec; 77(23):8234-40. PubMed ID: 21965410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm.
    Li WW; Yu HQ
    Biotechnol Adv; 2011; 29(6):972-82. PubMed ID: 21884782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells.
    Li WW; Sheng GP; Liu XW; Cai PJ; Sun M; Xiao X; Wang YK; Tong ZH; Dong F; Yu HQ
    Biosens Bioelectron; 2011 Jun; 26(10):3987-92. PubMed ID: 21493055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for an alternative glycolytic pathway in rapidly proliferating cells.
    Vander Heiden MG; Locasale JW; Swanson KD; Sharfi H; Heffron GJ; Amador-Noguez D; Christofk HR; Wagner G; Rabinowitz JD; Asara JM; Cantley LC
    Science; 2010 Sep; 329(5998):1492-9. PubMed ID: 20847263
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.